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MRCET VISION 

 To become a model institution in the fields of Engineering, Technology and Management.  

 To have a perfect synchronization of the ideologies of MRCET with challenging demands of 

International Pioneering Organizations. 

MRCET MISSION 

To establish a pedestal for the integral innovation, team spirit, originality and competence in the 

students, expose them to face the global challenges and become pioneers of Indian vision of 

modern society. 

MRCET QUALITY POLICY. 

 To pursue continual improvement of teaching learning process of Undergraduate and Post 

Graduate programs in Engineering & Management vigorously. 

 To provide state of art infrastructure and expertise to impart the quality education.  
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PROGRAM OUTCOMES 
(PO’s) 

Engineering Graduates will be able to: 
1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences. 

3. Design / development of solutions: Design solutions for complex engineering problems 

and design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and environmental 

considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, and 

synthesis of the information to provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations. 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent responsibilities 

relevant to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and 

need for sustainable development. 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 

norms of the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and 

write effective reports and design documentation, make effective presentations, and give 

and receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member 

and leader in a team, to manage projects and in multi disciplinary environments. 

12. Life- long learning: Recognize the need for, and have the preparation and ability to     

engage in independent and life-long learning in the broadest context of technological 

change. 
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DEPARTMENT OF AERONAUTICAL ENGINEERING 

VISION 

Department of Aeronautical Engineering aims to be indispensable source in Aeronautical 

Engineering which has a zeal to provide the value driven platform for the students to acquire 

knowledge and empower themselves to shoulder higher responsibility in building a strong 

nation. 

MISSION 

The primary mission of the department is to promote engineering education and research. To 

strive consistently to provide quality education, keeping in pace with time and technology.  

Department passions to integrate the intellectual, spiritual, ethical and social development of the 

students for shaping them into dynamic engineers. 

 

QUALITY POLICY STATEMENT 

Impart up-to-date knowledge to the students in Aeronautical area to make them quality 

engineers. Make the students experience the applications on quality equipment and tools. 

Provide systems, resources and training opportunities to achieve continuous improvement. 

Maintain global standards in education, training and services. 
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PROGRAM EDUCATIONAL OBJECTIVES – Aeronautical 

Engineering 

1. PEO1 (PROFESSIONALISM & CITIZENSHIP): To create and sustain a community of 

learning in which students acquire knowledge and learn to apply it professionally with due 

consideration for ethical, ecological and economic issues. 

2. PEO2 (TECHNICAL ACCOMPLISHMENTS): To provide knowledge based services to 

satisfy the needs of society and the industry by providing hands on experience in various 

technologies in core field. 

3. PEO3 (INVENTION, INNOVATION AND CREATIVITY): To make the students to design, 

experiment, analyze, and interpret in the core field with the help of other multi disciplinary 

concepts wherever applicable. 

4. PEO4 (PROFESSIONAL DEVELOPMENT): To educate the students to disseminate 

research findings with good soft skills and become a successful entrepreneur. 

5. PEO5 (HUMAN RESOURCE DEVELOPMENT): To graduate the students in building 

national capabilities in technology, education and research 

 

PROGRAM SPECIFIC OUTCOMES – Aeronautical Engineering 

1. To mould students to become a professional with all necessary skills, personality and sound 

knowledge in basic and advance technological areas. 

2. To promote understanding of concepts and develop ability in design manufacture and 

maintenance of aircraft, aerospace vehicles and associated equipment and develop application 

capability of the concepts sciences to engineering design and processes. 

3. Understanding the current scenario in the field of aeronautics and acquire ability to apply 

knowledge of engineering, science and mathematics to design and conduct experiments in the 

field of Aeronautical Engineering. 

4. To develop leadership skills in our students necessary to shape the social, intellectual, business 

and technical worlds. 

 

 

 

 

 

 

 

 

 



AERONAUTICAL ENGINEERING – MRCET (UGC – Autonomous) 

 

IV – I B. Tech R15A0368 MVSD  By G Dheeraj  

6 

 

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 
       

 

IV Year B. Tech, ANE-I Sem 

  

                    (R15A0368) MECHANICAL VIBRATIONS AND                 

                      STRUCTURAL DYNAMICS 

 

Objectives:  

 To gain fundamental knowledge on vibration and related systems in the context of Aircraft 

Structures 

 To give Exposure on damped and undamped vibratory systems. 

 Basic knowledge on dynamic balancing of rotor system 

 

UNIT-I  

FUNDAMENTALS OF VIBRATION: Brief history of vibration, Importance of the study of vibration, basic 

concepts of vibration, classification of vibrations, vibration analysis procedure, spring elements, mass or 

inertia elements, damping elements, harmonic analysis. FREE VIBRATION OF SINGLE DEGREE OF 

FREEDOM SYSTEMS: Introduction, Free vibration of an undamped translational system, free vibration of 

an undamped torsional system, stability conditions, Raleigh’s energy method, free vibration with 

viscous damping, free vibration with coulomb damping, free vibration with hysteretic damping.  

 

UNIT-II  

HARMONICALLY EXITED VIBRATIONS: Introduction, Equation of motion, response of an undamped 

system under harmonic force, Response of a damped system under harmonic force, Response of a 

damped system under harmonic motion of the base, Response of a damped system under rotating 

unbalance, forced vibration with coulomb damping, forced vibration with hysteresis damping.  

 

UNIT-III  

VIBRATION UNDER GENERAL FORCING CONDITIONS: Introduction, Response under a general periodic 

force, Response under a periodic force of irregular form, Response under a non periodic force, 

convolution integral. Two Degree of Freedom Systems: Introduction, Equation of motion for forced 

vibration, free vibration analysis of an undamped system, Torsional system, Coordinate coupling and 

principal coordinates, forced vibration analysis.  

 

UNIT-IV  

MULTIDEGREE OF FREEDOM SYSTEMS: Introduction, Modeling of Continuous systems as multi degree 

of freedom systems, Using Newtons second law to derive equations of motion, Influence coefficients, 

Free and Forced vibration of undamped systems, Forced vibration of viscously damped systems. 

Determination Of Natural Frequencies and Mode Shapes: Introduction, Dunkerleys formula, Rayleighs 

method, Holzers method, Matrix iteration method, Jacobi;s method.   

 

 

UNIT-V  

L T/P/D C 

5 1/-/- 4 
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CONTINUOUS SYSTEMS: Transverse vibration of a spring or a cable, longitudinal vibration of bar or rod, 

Torsional vibration of a bar or rod, Lateral vibration of beams, critical speed of rotors.  

 

Text Books:  

1. Mechanical Vibrations by S.S.Rao. 

2. Mechanical Vibrations by V.P.Singh 

 

Reference Books: 

1. Mechanical Vibrations by G.K. Grover  

2. Mechanical Vibrations by W.T. Thomson  

3. Mechanical vibrations: theory and application to structural dynamics, Michel Géradin, Daniel Rixen, 

John Wiley, 1997 

 

Outcomes: 

 Fundamental frequency of Multi- DOF systems can estimate by various methods. 

 Effect of unbalance in rotating masses has been studied. 

 How to determine eigenvalues and eigenvectors for a vibratory system has analysed  
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AEROSPACE VEHICLE STRUCTURES -II 

Model Question Paper – I 
 

PART A 

ANSWER ALL QUESTIONS 
1.   Write about resolution of bending moments with neat sketches. 

2.   Explain the energy method for bending of thin plates? 

3.   What are the factors that determine the angle of diagonal tension? If the flanges and stiffness 

are rigid what will be the angle of diagonal tension? 

4.   Write short notes on the following: i. Symmetrical bending ii. Unsymmetrical bending. 

5.   Explain the following terms. i. Shear center ii. Shear flow iii. Centre of twist. 

6.   Find the section properties of the following idealized panel. 

 

7.   Find the sectional properties of given section 

 
 

 

8.   Write a short note on loading discontinuities in beams? 

9.   Write short onte on fuselage frames and wing ribs? 

10. Explain about determinate and indeterminate structure of wing and fuselages?
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1. Determine the deflected form of the thin rectangular plate a × b is simply supported along 
its edges and carrying a uniformly distributed load of intensity q0. In addition to that it 

supports an in-plane tensile force Nx per unit length. Here ‘a’ is length and ‘b’ is width of 

the plate. 

(OR) 
 

2.   A simply supported beam has a span of 2.4m and carries a central concentrated load of 10 

kN. The flanges of the beam each have a cross-sectional area of300mm
2 

while that of the 

vertical web stiffeners is 280mm
2
. If the depth  of the beam, measured between the 

centroids of area of the flanges, is 350mm and the stiffeners are symmetrically arranged 
about the web and spaced at 300mm intervals, determine the maximum axial load in a 
flange and the compressive load in a stiffener. It may be assumed that the beam web, of 
thickness 1.5 mm, is capable of resisting diagonal tension only. 

3.   Determine  the  direct  stress  distribution  in  the  thin-walled  Z-section  shown  in  Fig. 

produced by a positive bending moment Mx. 

 

(OR) 

4.   A thin-walled closed section beam has the singly symmetrical cross-section shown in Fig. 

Each wall of the section is flat and has the same thickness t and shear modulus G. 

Calculate the distance of the shear centre from point 4 

5.   Idealize the box section shown in Fig. into an arrangement of direct stress carrying          

      booms positioned at the four corners and panels which are assumed to carry only shear 
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stresses. Hence determine the distance of the shear centre from the left-hand web. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(OR)  
6.   Figure shows the cross-section of a single cell, thin-walled beam with a horizontal axis of 

symmetry. The direct stresses are carried by the booms B1 to B4, while the walls are 
effective only in carrying shear stresses. Assuming that the basic theory of bending is 
applicable, calculate the position of the shear centre S. The shear modulus G is the same 
for all walls. Cell area=135000mm

2
. Boom areas: B1 =B4 =450mm

2
, B2 =B3 =550mm

2
. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.   Determine the shear flow distribution at the built-in end of a beam whose cross-section is 

shown in Fig. All walls have the same thickness t and shear modulus G; R=200 mm.
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(OR) 

 
8.   An axially symmetric beam has the thin-walled cross-section shown in Fig. If the thickness t 

is constant throughout and making the usual assumptions for a thin-walled cross-section, 

show that the torsion bending constant ГR calculated about the shear centre S is 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9.   The fuselage of a light passenger carrying aircraft has the circular cross-section shown in 
Fig. The cross-sectional area of each stringer is 100mm

2 
and the vertical distances given 

in Fig. are to the mid-line of the sectionwall at the corresponding stringer position. 
(a) If the fuselage is subjected to a bending moment of 200 kNm applied 

in the vertical plane of symmetry, at this section, calculate the direct stress distribution. 

(b) The fuselage   is subjected to a vertical shear load of 100 kN applied at a distance of 

150mm from the vertical axis of symmetry as shown, for the idealized section, in Fig. 

22.2. Calculate the distribution of shear flow in the section.
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(OR) 
 

 

10. The central cell of a wing has the idealized section shown in Fig. If the lift and drag loads on 

the wing produce bending moments of −120 000Nm and −30 000Nm, respectively at the 

section shown, calculate the direct stresses in the booms. Neglect axial constraint effects and 

assume that the lift and drag vectors are in vertical and horizontal planes. 

Boom areas: B1 = B4 = B5 = B8 = 1000mm
2 

B2 = B3 = B6 = B7 = 600mm
2
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AEROSPACE VEHICLE STRUCTURES -II 

Model Question Paper - II 

PART A 
ANSWER ALL QUESTIONS 

 

1.         Explain the basic theory of thin plates? 

2.         What is the term flexural rigidity called in bending of thin plates and explain? 

3. How  to  determine  the  shear  flow  distribution  of  combined  section  beams 
subjected to shear loads. 

4. If the cross section of a beam is 10mmx5mm and torque is 100Nmm. Calculate 
shear flow with neat sketch. 

5.         Explain how to idealization the panel. 
6.         What is the boom area? 
7. Discuss shear stress distributions of a closed section beam built in one end and 

subjected to bending. 

8. Explain shear lag that poses problems in the analysis of wide, shallow, thin walled 
beams. 

9.         How to find the shear flow distribution of variable string area wing. 
10.       Write about the cutouts in fuselage and wing with neat sketches. 

 
PART – B ANSWER 

ANY FIVE 
1.   A thin rectangular plate a × b is simply supported along its edges and carries a uniformly 

distributed load of intensity q0. Determine the deflected form of the plate and the distribution 
of bending moment. Here ‘a’ is length and ‘b’ is width of the   plate. 

(OR) 

2.    Derive the equation to find out the shear center of  figure shown 

 

3. Derive Bredt-Batho formula and also explain displacements associated with the Bredt- 

Batho shear flow. 

(OR) 

4.         Derive the equation 
 
 
 
 
 

5. Determine the shear flow distribution in the thin-walled Z-section shown in Figure due to 

a shear load Sy applied through the shear center of the section.
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(OR) 

 
6.         The wing section shown in Figure has been idealized such that the booms carry all 

the direct stresses. If the wing section is subjected to a bending moment of 300 kN m 

applied in a vertical plane, calculate the direct stresses in the booms. Boom areas: B1 = B6 
= 2580 mm

2 
B2 = B5 = 3880 mm

2 
B3 = B4 = 3230 mm

2
 

 

 
 

 
 

(OR) 

7.   The unsymmetrical panel shown in Fig. comprises three direct stress carrying booms and 

two shear stress carrying panels. If the panel supports a load P at its free end and is 

pinned to supports at the ends of its outer booms determine the distribution of direct load 

in the central boom. Determine also the load in the central boom when A=B=C and shear 

lag effects are absent. 
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8. An open section beam of length L has the section shown in Figure. The beam is firmly 

built-in at one end and carries a pure torque T. Derive expressions for the direct stress and 

shear flow distributions produced by the axial constraint (the σ Г and q Г systems) and the 

rate of twist of the beam 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9. Calculate the shear flows in the web panels and direct load in the flanges and stiffeners of 

the beam shown in Figure if the web panels resist shear stresses only. 

 
 

(OR) 
 

10. Calculate the shear flows in the web panels and the axial loads in the flanges of the wing rib 

shown in Figure. Assume that the web of the rib is effective only in shear while the resistance 

of the wing to bending moments is provided entirely by the three flanges 1, 2  and 3. 
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AEROSPACE VEHICLE STRUCTURES -II 

Model Question Paper – III 
 

PART A 
ANSWER ALL QUESTIONS 

1.   Clearly explain the difference between synclastic and anticlastic surface of thin plates? 
 

2.   Clearly draw the figure for plate element subjected to bending, twisting and transverse loads? 

3.   Write the conditions for a plate which simply supported all edges? And write the assumed 

deflected form of the plate which satisfies the boundary conditions for this plate? 

4.   Explain warping distribution with neat sketch. 

5.   Discuss about primary and secondary warping of thin-walled beams. 

6.   Derive the equation to find out boom areas with neat sketches. 

7.   Explain the effect of idealization on the analysis of open and closed section beams. 

8.   Derive the equation to find out shear flow in a tapered wing. 

9.   How to find the shear flow of a fuselage with cutout. 

10. What is the function of wing ribs with neat sketches. 
 
 

PART B 
 

ANSWER ALL QUESTIONS 

 
1.   Derive the equation (1/ρ) = [ D (1+   υ )]of thin plate subjected to pure bending. 

(OR) 
 

 
2.   Figure shows the section of an angle purlin. A bending moment of 3000 Nm is applied to the 

purlin in a plane at an angle of 30
o 

to the vertical y axis. If the sense of the bending moment 
is such that its components Mx and My both produce tension in the positive xy quadrant, 

calculate the maximum direct stress in the purlin, stating clearly the point at which i t  acts. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.   Determine the maximum shear stress and the warping distribution in the channel section 

shown  in  Figure  when  it  is  subjected  to  an  anticlockwise  torque  of  10 Nm.  G=25000 

N/mm
2

.
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(OR) 

4.   A single cell, thin-walled beam with the double trapezoidal cross-section shown in Fig is 

subjected to a constant torque T =90 500Nmand is constrained to twist about an axis through 

the point R. Assuming that the shear stresses are distributed according to the Bredt–Batho 

theory of torsion, calculate the distribution of warping around the cross-section. Illustrate 

your answer clearly by means of a sketch and insert the principal values of the warping 

displacements. The shear modulus G=27 500N/mm2 and is constant throughout. 

 
 

5. Part of a wing section is in the form of the two-cell box shown in Figure in which the 

vertical spars are connected to the wing skin through angle sections, all having a cross- 
sectional area of 300 mm

2
. Idealize the section into an arrangement of direct stress- 

carrying  booms  and  shear-stress-only-carrying  panels  suitable  for  resisting  bending 

moments in a vertical plane. Position the booms at the spar/skin junctions. 
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(OR) 

6.   Derive Torsion – Bending constant for an arbitrary section beam subjected to Torsion. 

7.   A shallow box section beam whose cross-section is shown in Fig. is simply supported over a 

span of 2m and carries a vertically downward load of 20 kN at midspan. Idealise the section 

into one suitable for shear lag analysis, comprising eight booms, and hence determine the 

distribution of direct stress along the top right-hand corner of the beam. Take G/E =0.36. 

 

 
 

(OR) 

8.   Derive the expression for total torque of an I section beam. 

9.   The cantilever beam shown in Figure is uniformly tapered along its length in both x and y 

directions and carries a load of 100 kN at its free end. Calculate the forces in the booms and 

the shear flow distribution in the walls at a section 2 m from the built-in end if the booms 

resist all the direct stresses while the walls are effective only in shear. Each corner boom has 

a cross-sectional area of 900 mm
2 

while both central booms have cross-sectional areas of 

1200 mm
2

. 

 
 

(OR) 
 

10. A two-cell beam has singly symmetrical cross-sections 1.2m apart and tapers symmetrically 

in the y direction about a longitudinal axis. The beam supports loads which produce a shear force 

Sy =10 kN and a bending moment Mx =1.65 kNm at the larger cross-section; the shear load is 

applied in the plane of the internal spar web. If booms 1 and 6 lie in a plane which is parallel to 

the yz plane calculate the forces in the booms and the shear flow distribution in the walls at the 

larger cross-section. The booms are assumed to resist all the direct stresses while the walls are 

effective only in shear. The shear modulus is constant throughout, the vertical webs are all 

1.0mm thick while the remaining walls are all 0.8mm thick: Boom areas: B1 = B3 = B4 = B6 = 

600mm
2 

B2 = B5 = 900mm
2
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AEROSPACE VEHICLE STRUCTURES -II 

Model Question Paper – IV 
 

PART A 
ANSWER ALL QUESTIONS 

1.   Explain Instability of Stiffened panels. 
2.   A plate 10mmthick is subjected to bending moments Mx equal to 10 Nm/mm and My equal 

to 5 Nm/mm. Calculate the maximum direct stresses in the plate. 
3.   Explain about Bredt–Batho theory and formula. 
4.   Explain the condition for Zero warping at a section, and derive the warping of cross section. 

5.   What is the alternative method to find the shear flow distribution of idealized section. 

6.   Explain unitload method to find the deflection of beams. 
7.   Write the expressions for the bending and shear displacements of unsymmetrical thin-walled 

Beam using unitload method. 

8.   Write about general aspects of structural constraints. 

9.   What are the different methods of analysis for open section beams of wing structure? 

10. Explain the effect of taper on shearflow distribution of wings. 

 
PART A 

ANSWER ALL QUESTIONS 

1.   Derive the equation Mxy = D (1-υ) ∂2
w/∂x∂y for a thin plate subjected to bending and 

twisting. 
(OR) 

2.   What are complete and incomplete diagonal tensions in Tension field beams? Also derive the 

equation to find out the uniform direct compressive stresses induced by the diagonal tension 

in the flanges a n d stiffeners. 

3.   A beam having the cross section shown in Figure is subjected to a bending moment of 1500 
Nm in a vertical plane. Calculate the maximum direct stress due to bending stating the point 

at which it acts. 

 

 
 

 
 

(OR) 

4. Derive the equations to find out the primary and secondary warping of an open cross 

section subjected to Torsion. 

5.         The thin-walled single cell beam shown in Figure has been idealized into a combination
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Wall                12 34 23 

Length (mm)  375 125 500 

 

 
 
 

of direct stress-carrying booms and shear-stress-only-carrying walls. If the section 

supports a vertical shear load of 10 kN acting in a vertical plane through booms 3 and 6, 

calculate the distribution of shear flow around the section. Boom areas: B1=B8=200 
mm

2
, B2=B7=250 mm

2 
B3=B6=400 mm

2
,  B4=B5=100 mm

2
. 

 

 
 
 
 
 
 
 
 
 
 
 
 

(OR) 
 

6.    Derive total Torque equation of an arbitrary section beam subjected to Torsion. 

 
7.   Calculate the shear stress distribution at the built-in end of the beam shown in Fig. when, at 

this section, it carries a shear load of 22 000N acting at a distance of 100mm from and 

parallel to side 12. The modulus of rigidity G is constant throughout the section: 
 

 
 

 
 

(OR) 
 

8.   Write short note on distributed torque loading and boundary conditions of cantilever beam. 

9. A cantilever beam shown in Figure carries concentrated loads as shown. Calculate the 

distribution of stiffener loads and the shear flow distribution in the web panels assuming 

that the latter are effective only i n shear.
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(OR) 
 

10. Calculate the deflection at the free end of the two-cell beam shownin Fig. allowing for both 
bending and shear effects. The booms carry all the direct stresses while the skin panels, of 
constant thickness throughout, are effective only in shear. Take E = 69 000N/mm

2 
and G = 

25 900N/mm
2

 

Boom areas: B1 = B3 = B4 = B6 = 650mm
2 

B2 = B5 = 1300mm
2
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Bending of thin plates

Generally, we define a thin plate as a sheet of material whose thickness is small com-

pared with its other dimensions but which is capable of resisting bending in addition

to membrane forces. Such a plate forms a basic part of an aircraft structure, being, for

example, the area of stressed skin bounded by adjacent stringers and ribs in a wing

structure or by adjacent stringers and frames in a fuselage.

In this chapter we shall investigate the effect of a variety of loading and support

conditions on the small deflection of rectangular plates. Two approaches are presented:

an ‘exact’ theory based on the solution of a differential equation and an energy method

relying on the principle of the stationary value of the total potential energy of the plate

and its applied loading. The latter theory will subsequently be used in Chapter 9 to

determine buckling loads for unstiffened and stiffened panels.

7.1 Pure bending of thin plates

The thin rectangular plate of Fig. 7.1 is subjected to pure bending moments of intensity

Mx and My per unit length uniformly distributed along its edges. The former bending

moment is applied along the edges parallel to the y axis, the latter along the edges

Fig. 7.1 Plate subjected to pure bending.



220 Bending of thin plates

parallel to the x axis. We shall assume that these bending moments are positive when

they produce compression at the upper surface of the plate and tension at the lower.

If we further assume that the displacement of the plate in a direction parallel to the

z axis is small compared with its thickness t and that sections which are plane before

bending remain plane after bending, then, as in the case of simple beam theory, the

middle plane of the plate does not deform during the bending and is therefore a neutral

plane. We take the neutral plane as the reference plane for our system of axes.

Let us consider an element of the plate of side δxδy and having a depth equal to the

thickness t of the plate as shown in Fig. 7.2(a). Suppose that the radii of curvature of the

neutral plane n are ρx and ρy in the xz and yz planes respectively (Fig. 7.2(b)). Positive

curvature of the plate corresponds to the positive bending moments which produce

displacements in the positive direction of the z or downward axis. Again, as in simple

beam theory, the direct strains εx and εy corresponding to direct stresses σx and σy of

an elemental lamina of thickness δz a distance z below the neutral plane are given by

εx =
z

ρx
εy =

z

ρy
(7.1)

Referring to Eqs (1.52) we have

εx =
1

E
(σx − νσy) εy =

1

E
(σy − νσx) (7.2)

Substituting for εx and εy from Eqs (7.1) into (7.2) and rearranging gives

σx =
Ez

1 − ν2

(

1

ρx
+

ν

ρy

)

σy =
Ez

1 − ν2

(

1

ρy
+

ν

ρx

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(7.3)

Fig. 7.2 (a) Direct stress on lamina of plate element; (b) radii of curvature of neutral plane.
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As would be expected from our assumption of plane sections remaining plane the

direct stresses vary linearly across the thickness of the plate, their magnitudes depend-

ing on the curvatures (i.e. bending moments) of the plate. The internal direct stress

distribution on each vertical surface of the element must be in equilibrium with the

applied bending moments. Thus

Mxδy =

∫ t/2

−t/2

σxzδy dz

and

Myδx =

∫ t/2

−t/2

σyzδx dz

Substituting for σx and σy from Eqs (7.3) gives

Mx =

∫ t/2

−t/2

Ez2

1 − ν2

(

1

ρx
+

ν

ρy

)

dz

My =

∫ t/2

−t/2

Ez2

1 − ν2

(

1

ρy
+

ν

ρx

)

dz

Let

D =

∫ t/2

−t/2

Ez2

1 − ν2
dz =

Et3

12(1 − ν2)
(7.4)

Then

Mx = D

(

1

ρx
+

ν

ρy

)

(7.5)

My = D

(

1

ρy
+

ν

ρx

)

(7.6)

in which D is known as the flexural rigidity of the plate.

If w is the deflection of any point on the plate in the z direction, then we may relate

w to the curvature of the plate in the same manner as the well-known expression for

beam curvature. Hence

1

ρx
= −

∂2w

∂x2

1

ρy
= −

∂2w

∂y2

the negative signs resulting from the fact that the centres of curvature occur above the

plate in which region z is negative. Equations (7.5) and (7.6) then become

Mx = −D

(

∂2w

∂x2
+ ν

∂2w

∂y2

)

(7.7)

My = −D

(

∂2w

∂y2
+ ν

∂2w

∂x2

)

(7.8)
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Fig. 7.3 Anticlastic bending.

Equations (7.7) and (7.8) define the deflected shape of the plate provided that Mx and

My are known. If either Mx or My is zero then

∂2w

∂x2
= −ν

∂2w

∂y2
or

∂2w

∂y2
= −ν

∂2w

∂x2

and the plate has curvatures of opposite signs. The case of My = 0 is illustrated in

Fig. 7.3.A surface possessing two curvatures of opposite sign is known as an anticlastic

surface, as opposed to a synclastic surface which has curvatures of the same sign.

Further, if Mx =My =M then from Eqs (7.5) and (7.6)

1

ρx
=

1

ρy
=

1

ρ

Therefore, the deformed shape of the plate is spherical and of curvature

1

ρ
=

M

D(1 + ν)
(7.9)

7.2 Plates subjected to bending and twisting

In general, the bending moments applied to the plate will not be in planes perpendicular

to its edges. Such bending moments, however, may be resolved in the normal manner

into tangential and perpendicular components, as shown in Fig. 7.4. The perpendicular

components are seen to beMx andMy as before, while the tangential componentsMxy

andMyx (again these are moments per unit length) produce twisting of the plate about

axes parallel to the x and y axes. The system of suffixes and the sign convention for

these twistingmomentsmust be clearly understood to avoid confusion.Mxy is a twisting

moment intensity in a vertical x plane parallel to the y axis, while Myx is a twisting

moment intensity in a vertical y plane parallel to the x axis. Note that the first suffix

gives the direction of the axis of the twisting moment. We also define positive twisting

moments as being clockwise when viewed along their axes in directions parallel to the

positive directions of the corresponding x or y axis. In Fig. 7.4, therefore, all moment

intensities are positive.
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Fig. 7.4 Plate subjected to bending and twisting.

Fig. 7.5 (a) Plate subjected to bending and twisting; (b) tangential and normal moments on an arbitrary plane.

Since the twisting moments are tangential moments or torques they are resisted by

a system of horizontal shear stresses τxy, as shown in Fig. 7.6. From a consideration

of complementary shear stresses (see Fig. 7.6) Mxy = −Myx, so that we may represent

a general moment application to the plate in terms of Mx, My and Mxy as shown in

Fig. 7.5(a). These moments produce tangential and normal moments, Mt and Mn, on

an arbitrarily chosen diagonal plane FD. We may express these moment intensities (in

an analogous fashion to the complex stress systems of Section 1.6) in terms ofMx,My

andMxy. Thus, for equilibrium of the triangular element ABC of Fig. 7.5(b) in a plane

perpendicular to AC

MnAC = MxABcosα + MyBC sin α − MxyAB sin α − MxyBC cosα

giving

Mn = Mx cos
2 α + My sin

2 α − Mxy sin 2α (7.10)

Similarly for equilibrium in a plane parallel to CA

MtAC = MxAB sin α − MyBC cosα + MxyABcosα − MxyBC sin α

or

Mt =
(Mx − My)

2
sin 2α + Mxy cos 2α (7.11)
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(compare Eqs (7.10) and (7.11) with Eqs (1.8) and (1.9)). We observe from Eq. (7.11)

that there are two values of α, differing by 90◦ and given by

tan 2α = −
2Mxy

Mx − My

for which Mt = 0, leaving normal moments of intensity Mn on two mutually perpen-

dicular planes. These moments are termed principal moments and their corresponding

curvatures principal curvatures. For a plate subjected to pure bending and twisting in

which Mx, My and Mxy are invariable throughout the plate, the principal moments are

the algebraically greatest and least moments in the plate. It follows that there are no

shear stresses on these planes and that the corresponding direct stresses, for a given

value of z and moment intensity, are the algebraically greatest and least values of direct

stress in the plate.

Let us now return to the loaded plate of Fig. 7.5(a). We have established, in Eqs (7.7)

and (7.8), the relationships between the bending moment intensities Mx and My and

the deflection w of the plate. The next step is to relate the twisting moment Mxy to w.

From the principle of superposition we may consider Mxy acting separately from Mx

andMy. As stated previouslyMxy is resisted by a system of horizontal complementary

shear stresses on the vertical faces of sections taken throughout the thickness of the

plate parallel to the x and y axes. Consider an element of the plate formed by such

sections, as shown in Fig. 7.6. The complementary shear stresses on a lamina of the

element a distance z below the neutral plane are, in accordance with the sign convention

of Section 1.2, τxy. Therefore, on the face ABCD

Mxyδy = −

∫ t/2

−t/2

τxyδyz dz

Fig. 7.6 Complementary shear stresses due to twisting moments Mxy.
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and on the face ADFE

Mxyδx = −

∫ t/2

−t/2

τxyδxz dz

giving

Mxy = −

∫ t/2

−t/2

τxyz dz

or in terms of the shear strain γxy and modulus of rigidity G

Mxy = −G

∫ t/2

−t/2

γxyz dz (7.12)

Referring to Eqs (1.20), the shear strain γxy is given by

γxy =
∂v

∂x
+

∂u

∂y

We require, of course, to express γxy in terms of the deflection w of the plate; this

may be accomplished as follows. An element taken through the thickness of the plate

will suffer rotations equal to ∂w/∂x and ∂w/∂y in the xz and yz planes respectively.

Considering the rotation of such an element in the xz plane, as shown in Fig. 7.7, we

see that the displacement u in the x direction of a point a distance z below the neutral

plane is

u = −
∂w

∂x
z

Similarly, the displacement v in the y direction is

v = −
∂w

∂y
z

Fig. 7.7 Determination of shear strain γxy.
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Hence, substituting for u and v in the expression for γxy we have

γxy = −2z
∂2w

∂x∂y
(7.13)

whence from Eq. (7.12)

Mxy = G

∫ t/2

−t/2

2z2
∂2w

∂x∂y
dz

or

Mxy =
Gt3

6

∂2w

∂x∂y

Replacing G by the expression E/2(1+ ν) established in Eq. (1.50) gives

Mxy =
Et3

12(1 + ν)

∂2w

∂x∂y

Multiplying the numerator and denominator of this equation by the factor (1− ν) yields

Mxy = D(1 − ν)
∂2w

∂x∂y
(7.14)

Equations (7.7), (7.8) and (7.14) relate the bending and twisting moments to the

plate deflection and are analogous to the bending moment-curvature relationship for a

simple beam.

7.3 Plates subjected to a distributed transverse load

The relationships between bending and twisting moments and plate deflection are now

employed in establishing the general differential equation for the solution of a thin

rectangular plate, supporting a distributed transverse load of intensity q per unit area

(see Fig. 7.8). The distributed load may, in general, vary over the surface of the plate

and is therefore a function of x and y. We assume, as in the preceding analysis, that the

middle plane of the plate is the neutral plane and that the plate deforms such that plane

sections remain plane after bending. This latter assumption introduces an apparent

inconsistency in the theory. For plane sections to remain plane the shear strains γxz and

γyz must be zero. However, the transverse load produces transverse shear forces (and

therefore stresses) as shown in Fig. 7.9. We therefore assume that although γxz = τxz/G

and γyz = τyz/G are negligible the corresponding shear forces are of the same order of

magnitude as the applied load q and the momentsMx,My andMxy. This assumption is

analogous to that made in a slender beam theory in which shear strains are ignored.

The element of plate shown in Fig. 7.9 supports bending and twisting moments as

previously described and, in addition, vertical shear forces Qx and Qy per unit length

on faces perpendicular to the x and y axes, respectively. The variation of shear stresses

τxz and τyz along the small edges δx, δy of the element is neglected and the resultant
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Fig. 7.8 Plate supporting a distributed transverse load.

Fig. 7.9 Plate element subjected to bending, twisting and transverse loads.

shear forces Qxδy and Qyδx are assumed to act through the centroid of the faces of the

element. From the previous sections

Mx =

∫ t/2

−t/2

σxz dz My =

∫ t/2

−t/2

σyz dz Mxy = (−Myx) = −

∫ t/2

−t/2

τxyz dz

In a similar fashion

Qx =

∫ t/2

−t/2

τxz dz Qy =

∫ t/2

−t/2

τyz dz (7.15)

For equilibrium of the element parallel to Oz and assuming that the weight of the

plate is included in q

(

Qx +
∂Qx

∂x
δx

)

δy − Qxδy +

(

Qy +
∂Qy

∂y
δy

)

δx − Qyδx + qδxδy = 0



228 Bending of thin plates

or, after simplification

∂Qx

∂x
+

∂Qy

∂y
+ q = 0 (7.16)

Taking moments about the x axis

Mxyδy −

(

Mxy +
∂Mxy

∂x
δx

)

δy − Myδx +

(

My +
∂My

∂y
δy

)

δx

−

(

Qy +
∂Qy

∂y
δy

)

δxδy + Qx

δy2

2
−

(

Qx +
∂Qx

∂x
δx

)

δy2

2
− qδx

δy2

2
= 0

Simplifying this equation and neglecting small quantities of a higher order than those

retained gives

∂Mxy

∂x
−

∂My

∂y
+ Qy = 0 (7.17)

Similarly taking moments about the y axis we have

∂Mxy

∂y
−

∂Mx

∂x
+ Qx = 0 (7.18)

Substituting in Eq. (7.16) for Qx and Qy from Eqs (7.18) and (7.17) we obtain

∂2Mx

∂x2
−

∂2Mxy

∂x∂y
+

∂2My

∂y2
−

∂2Mxy

∂x∂y
= −q

or

∂2Mx

∂x2
− 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
= −q (7.19)

Replacing Mx, Mxy and My in Eq. (7.19) from Eqs (7.7), (7.14) and (7.8) gives

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
=

q

D
(7.20)

This equation may also be written

(

∂2

∂x2
+

∂2

∂y2

) (

∂2w

∂x2
+

∂2w

∂y2

)

=
q

D

or
(

∂2

∂x2
+

∂2

∂y2

)2

w =
q

D

The operator (∂2/∂x2 + ∂2/∂y2) is the well-known Laplace operator in two dimensions

and is sometimes written as ∇2. Thus

(∇2)2w =
q

D
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Generally, the transverse distributed load q is a function of x and y so that the

determination of the deflected form of the plate reduces to obtaining a solution of

Eq. (7.20), which satisfies the known boundary conditions of the problem. The bending

and twisting moments follow from Eqs (7.7), (7.8) and (7.14), and the shear forces per

unit length Qx and Qy are found from Eqs (7.17) and (7.18) by substitution forMx,My

and Mxy in terms of the deflection w of the plate; thus

Qx =
∂Mx

∂x
−

∂Mxy

∂y
= −D

∂

∂x

(

∂2w

∂x2
+

∂2w

∂y2

)

(7.21)

Qy =
∂My

∂y
−

∂Mxy

∂x
= −D

∂

∂y

(

∂2w

∂x2
+

∂2w

∂y2

)

(7.22)

Direct and shear stresses are then calculated from the relevant expressions relating them

to Mx, My, Mxy, Qx and Qy.

Before discussing the solution of Eq. (7.20) for particular cases we shall establish

boundary conditions for various types of edge support.

7.3.1 The simply supported edge

Let us suppose that the edge x= 0 of the thin plate shown in Fig. 7.10 is free to rotate

but not to deflect. The edge is then said to be simply supported. The bending moment

along this edge must be zero and also the deflection w= 0. Thus

(w)x=0 = 0 and (Mx)x=0 = −D

(

∂2w

∂x2
+ ν

∂2w

∂y2

)

x=0

= 0

The condition that w= 0 along the edge x= 0 also means that

∂w

∂y
=

∂2w

∂y2
= 0

Fig. 7.10 Plate of dimensions a × b.
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along this edge. The above boundary conditions therefore reduce to

(w)x=0 = 0

(

∂2w

∂x2

)

x=0

= 0 (7.23)

7.3.2 The built-in edge

If the edge x= 0 is built-in or firmly clamped so that it can neither rotate nor deflect,

then, in addition to w, the slope of the middle plane of the plate normal to this edge

must be zero. That is

(w)x=0 = 0

(

∂w

∂x

)

x=0

= 0 (7.24)

7.3.3 The free edge

Along a free edge there are no bending moments, twisting moments or vertical shearing

forces, so that if x= 0 is the free edge then

(Mx)x=0 = 0 (Mxy)x=0 = 0 (Qx)x=0 = 0

giving, in this instance, three boundary conditions. However, Kirchhoff (1850) showed

that only two boundary conditions are necessary to obtain a solution of Eq. (7.20),

and that the reduction is obtained by replacing the two requirements of zero twisting

moment and zero shear force by a single equivalent condition. Thomson andTait (1883)

gave a physical explanation of how this reduction may be effected. They pointed out

that the horizontal force system equilibrating the twisting momentMxy may be replaced

along the edge of the plate by a vertical force system.

Consider two adjacent elements δy1 and δy2 along the edge of the thin plate of

Fig. 7.11. The twisting moment Mxyδy1 on the element δy1 may be replaced by forces

Mxy a distance δy1 apart. Note that Mxy, being a twisting moment per unit length,

has the dimensions of force. The twisting moment on the adjacent element δy2 is

[Mxy + (∂Mxy/∂y)δy]δy2. Again this may be replaced by forces Mxy + (∂Mxy/∂y)δy.

At the common surface of the two adjacent elements there is now a resultant force

(∂Mxy/∂y)δy or a vertical force per unit length of ∂Mxy/∂y. For the sign conven-

tion for Qx shown in Fig. 7.9 we have a statically equivalent vertical force per unit

length of (Qx − ∂Mxy/∂y). The separate conditions for a free edge of (Mxy)x=0 = 0 and

(Qx)x=0 = 0 are therefore replaced by the equivalent condition

(

Qx −
∂Mxy

∂y

)

x=0

= 0

or in terms of deflection

[

∂3w

∂x3
+ (2 − ν)

∂3w

∂x∂y2

]

x=0

= 0 (7.25)
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Fig. 7.11 Equivalent vertical force system.

Also, for the bending moment along the free edge to be zero

(Mx)x=0 =

(

∂2w

∂x2
+ ν

∂2w

∂y2

)

x=0

= 0 (7.26)

The replacement of the twistingmomentMxy along the edges x= 0 and x= a of a thin

plate by a vertical force distribution results in leftover concentrated forces at the corners

ofMxy as shown in Fig. 7.11. By the same argument there are concentrated forcesMyx

produced by the replacement of the twisting moment Myx. Since Mxy = −Myx, then

resultant forces 2Mxy act at each corner as shown and must be provided by external

supports if the corners of the plate are not to move. The directions of these forces

are easily obtained if the deflected shape of the plate is known. For example, a thin

plate simply supported along all four edges and uniformly loaded has ∂w/∂x positive

and numerically increasing, with increasing y near the corner x= 0, y= 0. Hence

∂2w/∂x∂y is positive at this point and from Eq. (7.14) we see that Mxy is positive and

Myx negative; the resultant force 2Mxy is therefore downwards. From symmetry the

force at each remaining corner is also 2Mxy downwards so that the tendency is for the

corners of the plate to rise.

Having discussed various types of boundary conditions we shall proceed to obtain

the solution for the relatively simple case of a thin rectangular plate of dimensions

a× b, simply supported along each of its four edges and carrying a distributed load

q(x, y).We have shown that the deflected form of the plate must satisfy the differential

equation

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
=

q(x, y)

D
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with the boundary conditions

(w)x=0,a = 0

(

∂2w

∂x2

)

x=0,a

= 0

(w)y=0,b = 0

(

∂2w

∂y2

)

x=0,b

= 0

Navier (1820) showed that these conditions are satisfied by representing the deflection

w as an infinite trigonometrical or Fourier series

w =

∞
∑

m=1

∞
∑

n=1

Amn sin
mπx

a
sin

nπy

b
(7.27)

in which m represents the number of half waves in the x direction and n the corres-

ponding number in the y direction. Further, Amn are unknown coefficients which must

satisfy the above differential equation and may be determined as follows.

We may also represent the load q(x, y) by a Fourier series, thus

q(x, y) =

∞
∑

m=1

∞
∑

n=1

amn sin
mπx

a
sin

nπy

b
(7.28)

A particular coefficient am′n′ is calculated by first multiplying both sides of Eq. (7.28)

by sin(m′πx/a) sin(n′πy/b) and integrating with respect to x from 0 to a andwith respect

to y from 0 to b. Thus

∫ a

0

∫ b

0

q(x, y) sin
m′πx

a
sin

n′πy

b
dx dy

=

∞
∑

m=1

∞
∑

n=1

∫ a

0

∫ b

0

amn sin
mπx

a
sin

m′πx

a
sin

nπy

b
sin

n′πy

b
dx dy

=
ab

4
am′n′

since
∫ a

0

sin
mπx

a
sin

m′πx

a
dx = 0 when m �= m′

=
a

2
when m = m′

and

∫ b

0

sin
nπy

b
sin

n′πy

b
dy = 0 when n �= n′

=
b

2
when n = n′
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It follows that

am′n′ =
4

ab

∫ a

0

∫ b

0

q(x, y) sin
m′πx

a
sin

n′πy

b
dx dy (7.29)

Substituting now for w and q(x, y) from Eqs (7.27) and (7.28) into the differential

equation for w we have

∞
∑

m=1

∞
∑

n=1

{

Amn

[

(mπ

a

)4
+ 2

(mπ

a

)2 (nπ

b

)2
+

(nπ

b

)4
]

−
amn

D

}

sin
mπx

a
sin

nπy

b
= 0

This equation is valid for all values of x and y so that

Amn

[

(mπ

a

)4
+ 2

(mπ

a

)2 (nπ

b

)2
+

(nπ

b

)4
]

−
amn

D
= 0

or in alternative form

Amnπ
4

(

m2

a2
+

n2

b2

)2

−
amn

D
= 0

giving

Amn =
1

π4D

amn

[(m2/a2) + (n2/b2)]2

Hence

w =
1

π4D

∞
∑

m=1

∞
∑

n=1

amn

[(m2/a2) + (n2/b2)]2
sin

mπx

a
sin

nπy

b
(7.30)

in which amn is obtained from Eq. (7.29). Equation (7.30) is the general solution for a

thin rectangular plate under a transverse load q(x, y).

Example 7.1
A thin rectangular plate a× b is simply supported along its edges and carries a uniformly

distributed load of intensity q0. Determine the deflected form of the plate and the

distribution of bending moment.

Since q(x, y)= q0 we find from Eq. (7.29) that

amn =
4q0

ab

∫ a

0

∫ b

0

sin
mπx

a
sin

nπy

b
dx dy =

16q0

π2mn

where m and n are odd integers. For m or n even, amn = 0. Hence from Eq. (7.30)

w =
16q0

π6D

∞
∑

m=1,3,5

∞
∑

n=1,3,5

sin (mπx/a) sin (nπy/b)

mn[(m2/a2) + (n2/b2)]2
(i)
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The maximum deflection occurs at the centre of the plate where x= a/2, y= b/2. Thus

wmax =
16q0

π6D

∞
∑

m=1,3,5

∞
∑

n=1,3,5

sin (mπ/2) sin (nπ/2)

mn[(m2/a2) + (n2/b2)]2
(ii)

This series is found to converge rapidly, the first few terms giving a satisfactory answer.

For a square plate, taking ν = 0.3, summation of the first four terms of the series

gives

wmax = 0.0443q0
a4

Et3

Substitution for w from Eq. (i) into the expressions for bending moment, Eqs (7.7) and

(7.8), yields

Mx =
16q0

π4

∞
∑

m=1,3,5

∞
∑

n=1,3,5

[(m2/a2) + ν(n2/b2)]

mn[(m2/a2) + (n2/b2)]2
sin

mπx

a
sin

nπy

b
(iii)

My =
16q0

π4

∞
∑

m=1,3,5

∞
∑

n=1,3,5

[ν(m2/a2) + (n2/b2)]

mn[(m2/a2) + (n2/b2)]2
sin

mπx

a
sin

nπy

b
(iv)

Maximum values occur at the centre of the plate. For a square plate a= b and the first

five terms give

Mx,max = My,max = 0.0479q0a
2

Comparing Eqs (7.3) with Eqs (7.5) and (7.6) we observe that

σx =
12Mxz

t3
σy =

12Myz

t3

Again the maximum values of these stresses occur at the centre of the plate at z= ± t/2

so that

σx,max =
6Mx

t2
σy,max =

6My

t2

For the square plate

σx,max = σy,max = 0.287q0
a2

t2

The twisting moment and shear stress distributions follow in a similar manner.

The infinite series (Eq. (7.27)) assumed for the deflected shape of a plate gives an

exact solution for displacements and stresses. However, a more rapid, but approximate,

solution may be obtained by assuming a displacement function in the form of a polyno-

mial. The polynomial must, of course, satisfy the governing differential equation (Eq.

(7.20)) and the boundary conditions of the specific problem. The “guessed” form of

the deflected shape of a plate is the basis for the energy method of solution described

in Section 7.6.
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Example 7.2
Show that the deflection function

w = A(x2y2 − bx2y − axy2 + abxy)

is valid for a rectangular plate of sides a and b, built in on all four edges and subjected

to a uniformly distributed load of intensity q. If the material of the plate has aYoung’s

modulus E and is of thickness t determine the distributions of bending moment along

the edges of the plate.

Differentiating the deflection function gives

∂4w

∂x4
= 0

∂4w

∂y4
= 0

∂4w

∂x2∂y2
= 4A

Substituting in Eq. (7.20) we have

0 + 2 × 4A + 0 = constant =
q

D

The deflection function is therefore valid and

A =
q

8D

The bending moment distributions are given by Eqs (7.7) and (7.8), i.e.

Mx = −
q

4
[y2 − by + ν(x2 − ax)] (i)

My = −
q

4
[x2 − ax + ν(y2 − by)] (ii)

For the edges x= 0 and x= a

Mx = −
q

4
(y2 − by) My = −

νq

4
(y2 − by)

For the edges y= 0 and y= b

Mx = −
νq

4
(x2 − ax) My = −

q

4
(x2 − ax)

7.4 Combined bending and in-plane loading of a thin
rectangular plate

So far our discussion has been limited to small deflections of thin plates produced

by different forms of transverse loading. In these cases we assumed that the middle or

neutral plane of the plate remained unstressed.Additional in-plane tensile, compressive

or shear loads will produce stresses in the middle plane, and these, if of sufficient

magnitude, will affect the bending of the plate. Where the in-plane stresses are small
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Fig. 7.12 In-plane forces on plate element.

compared with the critical buckling stresses it is sufficient to consider the two systems

separately; the total stresses are then obtained by superposition. On the other hand, if

the in-plane stresses are not small then their effect on the bending of the plate must be

considered.

The elevation and plan of a small element δxδy of the middle plane of a thin deflected

plate are shown in Fig. 7.12. Direct and shear forces per unit length produced by the

in-plane loads are given the notation Nx, Ny and Nxy and are assumed to be acting in

positive senses in the directions shown. Since there are no resultant forces in the x or

y directions from the transverse loads (see Fig. 7.9) we need only include the in-plane

loads shown in Fig. 7.12 when considering the equilibrium of the element in these

directions. For equilibrium parallel to Ox

(

Nx +
∂Nx

∂x
δx

)

δy cos

(

∂w

∂x
+

∂2w

∂x2
δx

)

− Nxδy cos
∂w

∂x

+

(

Nyx +
∂Nyx

∂y
δy

)

δx − Nyxδx = 0

For small deflections ∂w/∂x and (∂w/∂x)+ (∂2w/∂x2)δx are small and the cosines of

these angles are therefore approximately equal to one. The equilibrium equation thus

simplifies to

∂Nx

∂x
+

∂Nyx

∂y
= 0 (7.31)
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Fig. 7.13 Component of shear loads in the z direction.

Similarly for equilibrium in the y direction we have

∂Ny

∂y
+

∂Nxy

∂x
= 0 (7.32)

Note that the components of the in-plane shear loads per unit length are, to a first order

of approximation, the value of the shear loadmultiplied by the projection of the element

on the relevant axis.

The determination of the contribution of the shear loads to the equilibrium of the

element in the z direction is complicated by the fact that the element possesses curvature

in both xz and yz planes. Therefore, from Fig. 7.13 the component in the z direction

due to the Nxy shear loads only is

(

Nxy +
∂Nxy

∂x
δx

)

δy

(

∂w

∂y
+

∂2w

∂x ∂y
δx

)

− Nxyδy
∂w

∂y

or

Nxy

∂2w

∂x ∂y
δx δy +

∂Nxy

∂x

∂w

∂y
δx δy

neglecting terms of a lower order. Similarly, the contribution of Nyx is

Nyx

∂2w

∂x ∂y
δx δy +

∂Nyx

∂y

∂w

∂x
δx δy

The components arising from the direct forces per unit length are readily obtained

from Fig. 7.12, namely

(

Nx +
∂Nx

∂x
δx

)

δy

(

∂w

∂x
+

∂2w

∂x2
δx

)

− Nxδy
∂w

∂x

or

Nx

∂2w

∂x2
δx δy +

∂Nx

∂x

∂w

∂x
δx δy
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and similarly

Ny

∂2w

∂y2
δx δy +

∂Ny

∂y

∂w

∂y
δx δy

The total force in the z direction is found from the summation of these expressions

and is

Nx

∂2w

∂x2
δx δy +

∂Nx

∂x

∂w

∂x
δx δy + Ny

∂2w

∂y2
δx δy +

∂Ny

∂y

∂w

∂y
δx δy

+
∂Nxy

∂x

∂w

∂y
δx δy + 2Nxy

∂2w

∂x ∂y
δx δy +

∂Nxy

∂y

∂w

∂x
δx δy

in which Nyx is equal to and is replaced by Nxy. Using Eqs (7.31) and (7.32) we reduce

this expression to
(

Nx

∂2w

∂x2
+ Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x ∂y

)

δx δy

Since the in-plane forces do not produce moments along the edges of the element

then Eqs (7.17) and (7.18) remain unaffected. Further, Eq. (7.16) may be modified

simply by the addition of the above vertical component of the in-plane loads to qδxδy.

Therefore, the governing differential equation for a thin plate supporting transverse and

in-plane loads is, from Eq. (7.20)

∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+

∂4w

∂y4
=

1

D

(

q + Nx

∂2w

∂x2
+ Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x ∂y

)

(7.33)

Example 7.3
Determine the deflected form of the thin rectangular plate of Example 7.1 if, in addition

to a uniformly distributed transverse load of intensity q0, it supports an in-plane tensile

force Nx per unit length.

The uniform transverse load may be expressed as a Fourier series (see Eq. (7.28) and

Example 7.1), i.e.

q =
16q0

π2

∞
∑

m=1,3,5

∞
∑

n=1,3,5

1

mn
sin

mπx

a
sin

nπy

b

Equation (7.33) then becomes, on substituting for q

∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+

∂4w

∂y4
−

Nx

D

∂2w

∂x2
=

16q0

π2D

∞
∑

m=1,3,5

∞
∑

n=1,3,5

1

mn
sin

mπx

a
sin

nπy

b
(i)

The appropriate boundary conditions are

w =
∂2w

∂x2
= 0 at x = 0 and a

w =
∂2w

∂y2
= 0 at y = 0 and b
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These conditions may be satisfied by the assumption of a deflected form of the plate

given by

w =

∞
∑

m=1

∞
∑

n=1

Amn sin
mπx

a
sin

nπy

b

Substituting this expression into Eq. (i) gives

Amn =
16q0

π6Dmn

[

(

m2

a2
+

n2

b2

)2

+
Nxm

2

π2Da2

] for odd m and n

Amn = 0 for even m and n

Therefore

w =
16q0

π6D

∞
∑

m=1,3,5

∞
∑

n=1,3,5

1

mn

[

(

m2

a2
+

n2

b2

)2

+
Nxm

2

π2Da2

] sin
mπx

a
sin

nπy

b
(ii)

Comparing Eq. (ii) with Eq. (i) of Example 7.1 we see that, as a physical inspection

would indicate, the presence of a tensile in-plane force decreases deflection. Conversely

a compressive in-plane force would increase the deflection.

7.5 Bending of thin plates having a small initial curvature

Suppose that a thin plate has an initial curvature so that the deflection of any point in its

middle plane isw0.We assume thatw0 is small comparedwith the thickness of the plate.

The application of transverse and in-plane loads will cause the plate to deflect a further

amount w1 so that the total deflection is then w=w0 +w1. However, in the derivation

of Eq. (7.33) we note that the left-hand side was obtained from expressions for bending

moments which themselves depend on the change of curvature. We therefore use the

deflection w1 on the left-hand side, not w. The effect on bending of the in-plane forces

depends on the total deflection w so that we write Eq. (7.33)

∂4w1

∂x4
+ 2

∂4w1

∂x2∂y2
+

∂4w1

∂y4

=
1

D

[

q + Nx

∂2(w0 + w1)

∂x2
+ Ny

∂2(w0 + w1)

∂y2
+ 2Nxy

∂2(w0 + w1)

∂x ∂y

]

(7.34)

The effect of an initial curvature on deflection is therefore equivalent to the application

of a transverse load of intensity

Nx

∂2w0

∂x2
+ Ny

∂2w0

∂y2
+ 2Nxy

∂2w0

∂x ∂y
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Thus, in-plane loads alone produce bending provided there is an initial curvature.

Assuming that the initial form of the deflected plate is

w0 =

∞
∑

m=1

∞
∑

n=1

Amn sin
mπx

a
sin

nπy

b
(7.35)

then by substitution in Eq. (7.34) we find that if Nx is compressive and Ny =Nxy = 0

w1 =

∞
∑

m=1

∞
∑

n=1

Bmn sin
mπx

a
sin

nπy

b
(7.36)

where

Bmn =
AmnNx

(π2D/a2)[m + (n2a2/mb2)]2 − Nx

We shall return to the consideration of initially curved plates in the discussion of the

experimental determination of buckling loads of flat plates in Chapter 9.

7.6 Energy method for the bending of thin plates

Two types of solution are obtainable for thin plate bending problems by the application

of the principle of the stationary value of the total potential energy of the plate and

its external loading. The first, in which the form of the deflected shape of the plate is

known, produces an exact solution; the second, the Rayleigh–Ritz method, assumes an

approximate deflected shape in the form of a series having a finite number of terms

chosen to satisfy the boundary conditions of the problem and also to give the kind of

deflection pattern expected.

In Chapter 5 we saw that the total potential energy of a structural system comprised

the internal or strain energy of the structural member, plus the potential energy of the

applied loading. We now proceed to derive expressions for these quantities for the

loading cases considered in the preceding sections.

7.6.1 Strain energy produced by bending and twisting

In thin plate analysis we are concerned with deflections normal to the loaded surface

of the plate. These, as in the case of slender beams, are assumed to be primarily due

to bending action so that the effects of shear strain and shortening or stretching of the

middle plane of the plate are ignored. Therefore, it is sufficient for us to calculate

the strain energy produced by bending and twisting only as this will be applicable, for

the reason of the above assumption, to all loading cases. It must be remembered that

we are only neglecting the contributions of shear and direct strains on the deflection of

the plate; the stresses producing them must not be ignored.

Consider the element δx× δy of a thin plate a× b shown in elevation in the xz plane

in Fig. 7.14(a). Bending moments Mx per unit length applied to its δy edge produce
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Fig. 7.14 (a) Strain energy of element due to bending; (b) strain energy due to twisting.

a change in slope between its ends equal to (∂2w/∂x2)δx. However, since we regard

the moments Mx as positive in the sense shown, then this change in slope, or relative

rotation, of the ends of the element is negative as the slope decreases with increasing

x. The bending strain energy due to Mx is then

1

2
Mxδy

(

−
∂2w

∂x2
δx

)

Similarly, in the yz plane the contribution of My to the bending strain energy is

1

2
Myδx

(

−
∂2w

∂y2
δy

)

The strain energy due to the twisting moment per unit length, Mxy, applied to the δy

edges of the element, is obtained from Fig. 7.14(b). The relative rotation of the δy edges

is (∂2w/∂x∂y)δx so that the corresponding strain energy is

1

2
Mxyδy

∂2w

∂x ∂y
δx

Finally, the contribution of the twisting moment Mxy on the δx edges is, in a similar

fashion

1

2
Mxyδx

∂2w

∂x ∂y
δy

The total strain energy of the element from bending and twisting is thus

1

2

(

−Mx

∂2w

∂x2
− My

∂2w

∂y2
+ 2Mxy

∂2w

∂x ∂y

)

δxδy
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Substitution for Mx, My and Mxy from Eqs (7.7), (7.8) and (7.14) gives the total strain

energy of the element as

D

2

[

(

∂2w

∂x2

)2

+

(

∂2w

∂y2

)2

+ 2ν
∂2w

∂x2

∂2w

∂y2
+ 2(1 − ν)

(

∂2w

∂x ∂y

)2
]

δx δy

which on rearranging becomes

D

2

{

(

∂2w

∂x2
+

∂2w

∂y2

)2

− 2(1 − ν)

[

∂2w

∂x2

∂2w

∂y2
−

(

∂2w

∂x ∂y

)2
]}

δx δy

Hence the total strain energy U of the rectangular plate a× b is

U =
D

2

∫ a

0

∫ b

0

{

(

∂2w

∂x2
+

∂2w

∂y2

)2

− 2(1 − ν)

[

∂2w

∂x2

∂2w

∂y2
−

(

∂2w

∂x ∂y

)2
]}

dx dy

(7.37)

Note that if the plate is subject to pure bending only, thenMxy = 0 and from Eq. (7.14)

∂2w/∂x∂y= 0, so that Eq. (7.37) simplifies to

U =
D

2

∫ a

0

∫ b

0

[

(

∂2w

∂x2

)2

+

(

∂2w

∂y2

)2

+ 2ν
∂2w

∂x2

∂2w

∂y2

]

dx dy (7.38)

7.6.2 Potential energy of a transverse load

An element δx× δy of the transversely loaded plate of Fig. 7.8 supports a load qδxδy.

If the displacement of the element normal to the plate is w then the potential energy δV

of the load on the element referred to the undeflected plate position is

δV = −wqδx δy (See Section 5.7)

Therefore, the potential energy V of the total load on the plate is given by

V = −

∫ a

0

∫ b

0

wq dx dy (7.39)

7.6.3 Potential energy of in-plane loads

We may consider each load Nx, Ny and Nxy in turn, then use the principle of super-

position to determine the potential energy of the loading system when they act

simultaneously. Consider an elemental strip of width δy along the length a of the

plate in Fig. 7.15(a). The compressive load on this strip is Nxδy and due to the bending

of the plate the horizontal length of the strip decreases by an amount λ, as shown in
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Fig. 7.15 (a) In-plane loads on plate; (b) shortening of element due to bending.

Fig. 7.15(b). The potential energy δVx of the load Nxδy, referred to the undeflected

position of the plate as the datum, is then

δVx = −Nxλδy (7.40)

From Fig. 7.15(b) the length of a small element δa of the strip is

δa = (δx2 + δw2)
1
2

and since ∂w/∂x is small then

δa ≈ δx

[

1 +
1

2

(

∂w

∂x

)2
]

Hence

a =

∫ a′

0

[

1 +
1

2

(

∂w

∂x

)2
]

dx



244 Bending of thin plates

giving

a = a′ +

∫ a′

0

1

2

(

∂w

∂x

)2

dx

and

λ = a − a′ =

∫ a′

0

1

2

(

∂w

∂x

)2

dx

Since

∫ a′

0

1

2

(

∂w

∂x

)2

dx only differs from

∫ a

0

1

2

(

∂w

∂x

)2

dx

by a term of negligible order we write

λ =

∫ a

0

1

2

(

∂w

∂x

)2

dx (7.41)

The potential energy Vx of the Nx loading follows from Eqs (7.40) and (7.41), thus

Vx = −
1

2

∫ a

0

∫ b

0

Nx

(

∂w

∂x

)2

dx dy (7.42)

Similarly

Vy = −
1

2

∫ a

0

∫ b

0

Ny

(

∂w

∂y

)2

dx dy (7.43)

The potential energy of the in-plane shear load Nxy may be found by considering the

work done by Nxy during the shear distortion corresponding to the deflection w of an

element. This shear strain is the reduction in the right angle C2AB1 to the angle C1AB1

of the element in Fig. 7.16 or, rotating C2A with respect to AB1 to AD in the plane

C1AB1, the angle DAC1. The displacement C2D is equal to (∂w/∂y)δy and the angle

DC2C1 is ∂w/∂x. Thus C1D is equal to

∂w

∂x

∂w

∂y
δy

and the angle DAC1 representing the shear strain corresponding to the bending

displacement w is

∂w

∂x

∂w

∂y

so that the work done on the element by the shear force Nxyδx is

1

2
Nxyδx

∂w

∂x

∂w

∂y
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Fig. 7.16 Calculation of shear strain corresponding to bending deflection.

Similarly, the work done by the shear force Nxyδy is

1

2
Nxyδy

∂w

∂x

∂w

∂y

and the total work done taken over the complete plate is

1

2

∫ a

0

∫ b

0

2Nxy

∂w

∂x

∂w

∂y
dx dy

It follows immediately that the potential energy of the Nxy loads is

Vxy = −
1

2

∫ a

0

∫ b

0

2Nxy

∂w

∂x

∂w

∂y
dx dy (7.44)

and for the complete in-plane loading system we have, from Eqs (7.42), (7.43) and

(7.44), a potential energy of

V = −
1

2

∫ a

0

∫ b

0

[

Nx

(

∂w

∂x

)2

+ Ny

(

∂w

∂y

)2

+ 2Nxy

∂w

∂x

∂w

∂y

]

dx dy (7.45)

We are now in a position to solve a wide range of thin plate problems provided that

the deflections are small, obtaining exact solutions if the deflected form is known or

approximate solutions if the deflected shape has to be ‘guessed’.

Considering the rectangular plate of Section 7.3, simply supported along all four

edges and subjected to a uniformly distributed transverse load of intensity q0, we know

that its deflected shape is given by Eq. (7.27), namely

w =

∞
∑

m=1

∞
∑

n=1

Amn sin
mπx

a
sin

nπy

b



246 Bending of thin plates

The total potential energy of the plate is, from Eqs (7.37) and (7.39)

U + V =

∫ a

0

∫ b

0

{

D

2

[

(

∂2w

∂x2
+

∂2w

∂y2

)2

−2(1 − ν)

{

∂2w

∂x2

∂2w

∂y2
−

(

∂2w

∂x ∂y

)2
}]

− wq0

}

dx dy (7.46)

Substituting in Eq. (7.46) for w and realizing that ‘cross-product’ terms integrate to

zero, we have

U + V =

∫ a

0

∫ b

0

{

D

2

∞
∑

m=1

∞
∑

n=1

A2
mn

[

π4

(

m2

a2
+

n2

b2

)2

sin2
mπx

a
sin2

nπy

b

− 2(1 − ν)
m2n2π4

a2b2

(

sin2
mπx

a
sin2

nπy

b
− cos2

mπx

a
cos2

nπy

b

)

]

− q0

∞
∑

m=1

∞
∑

n=1

Amn sin
mπx

a
sin

nπy

b

}

dx dy

The term multiplied by 2(1− ν) integrates to zero and the mean value of sin2 or cos2

over a complete number of half waves is 1
2
, thus integration of the above expression

yields

U + V =
D

2

∞
∑

m=1,3,5

∞
∑

n=1,3,5

A2
mn

π4ab

4

(

m2

a2
+

n2

b2

)2

− q0

∞
∑

m=1,3,5

∞
∑

n=1,3,5

Amn

4ab

π2mn

(7.47)

From the principle of the stationary value of the total potential energy we have

∂(U + V )

∂Amn

=
D

2
2Amn

π4ab

4

(

m2

a2
+

n2

b2

)2

− q0
4ab

π2mn
= 0

so that

Amn =
16q0

π6Dmn[(m2/a2) + (n2/b2)]2

giving a deflected form

w =
16q0

π6D

∞
∑

m=1,3,5

∞
∑

n=1,3,5

sin (mπx/a) sin (nπy/b)

mn[(m2/a2) + (n2/b2)]2

which is the result obtained in Eq. (i) of Example 7.1.

The above solution is exact since we know the true deflected shape of the plate in the

form of an infinite series for w. Frequently, the appropriate infinite series is not known

so that only an approximate solution may be obtained. The method of solution, known
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as the Rayleigh–Ritz method, involves the selection of a series for w containing a finite

number of functions of x and y. These functions are chosen to satisfy the boundary

conditions of the problem as far as possible and also to give the type of deflection

pattern expected. Naturally, the more representative the ‘guessed’ functions are the

more accurate the solution becomes.

Suppose that the ‘guessed’series forw in a particular problem contains three different

functions of x and y. Thus

w = A1f1(x, y) + A2 f2(x, y) + A3f3(x, y)

where A1, A2 and A3 are unknown coefficients.We now substitute forw in the appropri-

ate expression for the total potential energy of the system and assign stationary values

with respect to A1, A2 and A3 in turn. Thus

∂(U + V )

∂A1
= 0

∂(U + V )

∂A2
= 0

∂(U + V )

∂A3
= 0

giving three equations which are solved for A1, A2 and A3.

Example 7.4
A rectangular plate a× b, is simply supported along each edge and carries a uniformly

distributed load of intensity q0. Assuming a deflected shape given by

w = A11 sin
πx

a
sin

πy

b

determine the value of the coefficient A11 and hence find the maximum value of

deflection.

The expression satisfies the boundary conditions of zero deflection and zero curvature

(i.e. zero bendingmoment) along each edge of the plate. Substituting forw in Eq. (7.46)

we have

U + V =

∫ a

0

∫ b

0

[

DA2
11

2

{

π4

(a2b2)2
(a2 + b2)2 sin2

πx

a
sin2

πy

b
− 2(1 − ν)

×

[

π4

a2b2
sin2

πx

a
sin2

πy

b
−

π4

a2b2
cos2

πx

a
cos2

πy

b

]}

− q0A11 sin
πx

a
sin

πy

b

]

dx dy

whence

U + V =
DA2

11

2

π4

4a3b3
(a2 + b2)2 − q0A11

4ab

π2

so that

∂(U + V )

∂A11
=

DA11π
4

4a3b3
(a2 + b2)2 − q0

4ab

π2
= 0
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and

A11 =
16q0a

4b4

π6D(a2 + b2)2

giving

w =
16q0a

4b4

π6D(a2 + b2)2
sin

πx

a
sin

πy

b

At the centre of the plate w is a maximum and

wmax =
16q0a

4b4

π6D(a2 + b2)2

For a square plate and assuming ν = 0.3

wmax = 0.0455q0
a4

Et3

which compares favourably with the result of Example 7.1.

In this chapter we have dealt exclusively with small deflections of thin plates. For a

plate subjected to large deflections the middle plane will be stretched due to bending

so that Eq. (7.33) requires modification. The relevant theory is outside the scope of this

book but may be found in a variety of references.
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Problems

P.7.1 Aplate 10mm thick is subjected to bendingmomentsMx equal to 10Nm/mm

and My equal to 5Nm/mm. Calculate the maximum direct stresses in the plate.

Ans. σx,max = ± 600N/mm2, σy,max = ± 300N/mm2.

P.7.2 For the plate and loading of problemP.7.1 find themaximum twistingmoment

per unit length in the plate and the direction of the planes on which this occurs.

Ans. 2.5Nm/mm at 45◦ to the x and y axes.

P.7.3 The plate of the previous two problems is subjected to a twisting moment of

5Nm/mm along each edge, in addition to the bending moments of Mx = 10Nm/mm



Problems 249

andMy = 5Nm/mm. Determine the principalmoments in the plate, the planes onwhich

they act and the corresponding principal stresses.

Ans. 13.1Nm/mm, 1.9Nm/mm, α = −31.7◦, α = +58.3◦, ±786N/mm2,

±114N/mm2.

P.7.4 A thin rectangular plate of length a and width 2a is simply supported along

the edges x= 0, x= a, y= −a and y= +a. The plate has a flexural rigidity D, a

Poisson’s ratio of 0.3 and carries a load distribution given by q(x, y)= q0 sin(πx/a). If

the deflection of the plate may be represented by the expression

w =
qa4

Dπ4

(

1 + A cosh
πy

a
+ B

πy

a
sinh

πy

a

)

sin
πx

a

determine the values of the constants A and B.

Ans. A= −0.2213, B= 0.0431.

P.7.5 A thin, elastic square plate of side a is simply supported on all four sides and

supports a uniformly distributed load q. If the origin of axes coincides with the centre

of the plate show that the deflection of the plate can be represented by the expression

w =
q

96(1 − ν)D
[2(x4 + y4) − 3a2(1 − ν)(x2 + y2) − 12νx2y2 + A]

where D is the flexural rigidity, ν is Poisson’s ratio and A is a constant. Calculate the

value of A and hence the central deflection of the plate.

Ans. A= a4(5− 3ν)/4, Cen. def.= qa4(5− 3ν)/384D(1− ν)

P.7.6 The deflection of a square plate of side a which supports a lateral load

represented by the function q(x, y) is given by

w(x, y) = w0 cos
πx

a
cos

3πy

a

where x and y are referred to axes whose origin coincides with the centre of the plate

and w0 is the deflection at the centre.

If the flexural rigidity of the plate is D and Poisson’s ratio is ν determine the loading

function q, the support conditions of the plate, the reactions at the plate corners and the

bending moments at the centre of the plate.

Ans. q(x, y)=w0D100
π4

a4
cos

πx

a
cos

3πy

a

The plate is simply supported on all edges.

Reactions: −6w0D
(π

a

)2
(1− ν)

Mx =w0D
(π

a

)2
(1+ 9ν), My =w0D

(π

a

)2
(9+ ν).

P.7.7 A simply supported square plate a× a carries a distributed load according to

the formula

q(x, y) = q0
x

a
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where q0 is its intensity at the edge x= a. Determine the deflected shape of the plate.

Ans. w =
8q0a

4

π6D

∞
∑

m=1,2,3

∞
∑

n=1,3,5

(−1)m+1

mn(m2 + n2)2
sin

mπx

a
sin

nπy

a

P.7.8 An elliptic plate of major and minor axes 2a and 2b and of small thickness t is

clamped along its boundary and is subjected to a uniform pressure difference p between

the two faces. Show that the usual differential equation for normal displacements of a

thin flat plate subject to lateral loading is satisfied by the solution

w = w0

(

1 −
x2

a2
−

y2

b2

)2

where w0 is the deflection at the centre which is taken as the origin.

Determinew0 in terms of p and the relevant material properties of the plate and hence

expressions for the greatest stresses due to bending at the centre and at the ends of the

minor axis.

Ans. w0 =
3p(1 − ν2)

2Et3
(

3

a4
+

2

a2b2
+

3

b4

)

Centre, σx,max =
±3pa2b2(b2 + νa2)

t2(3b4 + 2a2b2 + 3a4)
, σy,max =

±3pa2b2(a2 + νb2)

t2(3b4 + 2a2b2 + 3a4)

Ends of minor axis

σx,max =
±6pa4b2

t2(3b4 + 2a2b2 + 3a4)
, σy,max =

±6pb4a2

t2(3b4 + 2a2b2 + 3a4)

P.7.9 Use the energy method to determine the deflected shape of a rectangular

plate a× b, simply supported along each edge and carrying a concentrated load W at

a position (ξ, η) referred to axes through a corner of the plate. The deflected shape of

the plate can be represented by the series

w =

∞
∑

m=1

∞
∑

n=1

Amn sin
mπx

a
sin

nπy

b

Ans. Amn =

4W sin
mπξ

a
sin

nπη

b

π4Dab[(m2/a2) + (n2/b2)]2
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P.7.10 If, in addition to the point load W , the plate of problem P.7.9 supports an

in-plane compressive load of Nx per unit length on the edges x= 0 and x= a, calculate

the resulting deflected shape.

Ans. Amn =

4W sin
mπξ

a
sin

nπη

b

abDπ4

[

(

m2

a2
+

n2

b2

)2

−
m2Nx

π2a2D

]

P.7.11 A square plate of side a is simply supported along all four sides and is

subjected to a transverse uniformly distributed load of intensity q0. It is proposed to

determine the deflected shape of the plate by the Rayleigh–Ritz method employing a

‘guessed’ form for the deflection of

w = A11

(

1 −
4x2

a2

) (

1 −
4y2

a2

)

in which the origin is taken at the centre of the plate.

Comment on the degree to which the boundary conditions are satisfied and find the

central deflection assuming ν = 0.3.

Ans.
0.0389q0a

4

Et3

P.7.12 A rectangular plate a× b, simply supported along each edge, possesses a

small initial curvature in its unloaded state given by

w0 = A11 sin
πx

a
sin

πy

b

Determine, using the energy method, its final deflected shape when it is subjected to a

compressive load Nx per unit length along the edges x= 0, x= a.

Ans. w =
A11

[

1 −
Nxa

2

π2D

/

(

1 +
a2

b2

)2
] sin

πx

a
sin

πy

b
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8

Columns

A large proportion of an aircraft’s structure comprises thin webs stiffened by slender

longerons or stringers. Both are susceptible to failure by buckling at a buckling stress

or critical stress, which is frequently below the limit of proportionality and seldom

appreciably above the yield stress of the material. Clearly, for this type of structure,

buckling is the most critical mode of failure so that the prediction of buckling loads of

columns, thin plates and stiffened panels is extremely important in aircraft design. In

this chapter we consider the buckling failure of all these structural elements and also

the flexural–torsional failure of thin-walled open tubes of low torsional rigidity.

Two types of structural instability arise: primary and secondary. The former involves

the complete element, there being no change in cross-sectional area while the wave-

length of the buckle is of the same order as the length of the element. Generally, solid

and thick-walled columns experience this type of failure. In the latter mode, changes

in cross-sectional area occur and the wavelength of the buckle is of the order of the

cross-sectional dimensions of the element. Thin-walled columns and stiffened plates

may fail in this manner.

8.1 Euler buckling of columns

The first significant contribution to the theory of the buckling of columns was made as

early as 1744 by Euler. His classical approach is still valid, and likely to remain so, for

slender columns possessing a variety of end restraints. Our initial discussion is therefore

a presentation of the Euler theory for the small elastic deflection of perfect columns.

However, we investigate first the nature of buckling and the difference between theory

and practice.

It is common experience that if an increasing axial compressive load is applied to a

slender column there is a value of the load at which the column will suddenly bow or

buckle in some unpredetermined direction. This load is patently the buckling load of the

column or something very close to the buckling load. Clearly this displacement implies

a degree of asymmetry in the plane of the buckle caused by geometrical and/or material

imperfections of the column and its load. However, in our theoretical stipulation of

a perfect column in which the load is applied precisely along the perfectly straight

centroidal axis, there is perfect symmetry so that, theoretically, there can be no sudden

bowing or buckling. We therefore require a precise definition of buckling load which

may be used in our analysis of the perfect column.
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Fig. 8.1 Definition of buckling load for a perfect column.

Fig. 8.2 Determination of buckling load for a pin-ended column.

If the perfect column of Fig. 8.1 is subjected to a compressive loadP, only shortening

of the column occurs nomatter what the value ofP. However, if the column is displaced

a small amount by a lateral load F then, at values of P below the critical or buckling

load, PCR, removal of F results in a return of the column to its undisturbed position,

indicating a state of stable equilibrium. At the critical load the displacement does not

disappear and, in fact, the column will remain in any displaced position as long as the

displacement is small. Thus, the buckling load PCR is associated with a state of neutral

equilibrium. For P>PCR enforced lateral displacements increase and the column is

unstable.

Consider the pin-ended columnAB of Fig. 8.2. We assume that it is in the displaced

state of neutral equilibrium associated with buckling so that the compressive load P

has attained the critical value PCR. Simple bending theory (see Chapter 16) gives

EI
d2v

dz2
= −M

or

EI
d2v

dz2
= −PCRv (8.1)
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so that the differential equation of bending of the column is

d2v

dz2
+

PCR

EI
v = 0 (8.2)

The well-known solution of Eq. (8.2) is

v = A cosµz + B sinµz (8.3)

where µ2 =PCR/EI and A and B are unknown constants. The boundary conditions for

this particular case are v = 0 at z= 0 and l. Thus A= 0 and

B sinµl = 0

For a non-trivial solution (i.e. v �= 0) then

sinµl = 0 or µl = nπ where n = 1, 2, 3, . . .

giving

PCRl
2

EI
= n2π2

or

PCR = n2π2EI

l2
(8.4)

Note that Eq. (8.3) cannot be solved for v nomatter howmany of the available boundary

conditions are inserted. This is to be expected since the neutral state of equilibrium

means that v is indeterminate.

The smallest value of buckling load, in other words the smallest value of P which

can maintain the column in a neutral equilibrium state, is obtained by substituting n= 1

in Eq. (8.4). Hence

PCR = π2EI

l2
(8.5)

Other values of PCR corresponding to n= 2, 3, . . . , are

PCR = 4π2EI

l2
,
9π2EI

l2
, . . .

These higher values of buckling load cause more complex modes of buckling such as

those shown in Fig. 8.3. The different shapes may be produced by applying external

restraints to a very slender column at the points of contraflexure to prevent lateral

movement. If no restraints are provided then these forms of buckling are unstable and

have little practical meaning.

The critical stress, σCR, corresponding to PCR, is, from Eq. (8.5)

σCR = π2E

(l/r)2
(8.6)
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Fig. 8.3 Buckling loads for different buckling modes of a pin-ended column.

Table 8.1

Ends le/l Boundary conditions

Both pinned 1.0 v = 0 at z= 0 and l
Both fixed 0.5 v = 0 at z= 0 and z= l, dv/dz= 0 at z= l
One fixed, the other free 2.0 v = 0 and dv/dz= 0 at z= 0
One fixed, the other pinned 0.6998 dv/dz= 0 at z= 0, v = 0 at z= l and z= 0

where r is the radius of gyration of the cross-sectional area of the column. The term

l/r is known as the slenderness ratio of the column. For a column that is not doubly

symmetrical, r is the least radius of gyration of the cross-section since the column will

bend about an axis about which the flexural rigidityEI is least.Alternatively, if buckling

is prevented in all but one plane then EI is the flexural rigidity in that plane.

Equations (8.5) and (8.6) may be written in the form

PCR = π2EI

l2e
(8.7)

and

σCR = π2E

(le/r)2
(8.8)

where le is the effective length of the column. This is the length of a pin-ended column

that would have the same critical load as that of a column of length l, but with different

end conditions. The determination of critical load and stress is carried out in an identical

manner to that for the pin-ended column except that the boundary conditions are dif-

ferent in each case. Table 8.1 gives the solution in terms of effective length for columns

having a variety of end conditions. In addition, the boundary conditions referred to the

coordinate axes of Fig. 8.2 are quoted. The last case in Table 8.1 involves the solution

of a transcendental equation; this is most readily accomplished by a graphical method.

Let us now examine the buckling of the perfect pin-ended column of Fig. 8.2 in

greater detail.We have shown, in Eq. (8.4), that the columnwill buckle at discrete values

of axial load and that associated with each value of buckling load there is a particular

bucklingmode (Fig. 8.3). These discrete values of buckling load are called eigenvalues,

their associated functions (in this case v =B sin nπz/l) are called eigenfunctions and

the problem itself is called an eigenvalue problem.

Further, suppose that the lateral load F in Fig. 8.1 is removed. Since the column

is perfectly straight, homogeneous and loaded exactly along its axis, it will suffer

only axial compression as P is increased. This situation, theoretically, would continue

until yielding of the material of the column occurred. However, as we have seen,
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Fig. 8.4 Behaviour of a perfect pin-ended column.

for values of P below PCR the column is in stable equilibrium whereas for P>PCR

the column is unstable. A plot of load against lateral deflection at mid-height would

therefore have the form shown in Fig. 8.4 where, at the point P=PCR, it is theoretically

possible for the column to take one of three deflection paths. Thus, if the column

remains undisturbed the deflection at mid-height would continue to be zero but unstable

(i.e. the trivial solution of Eq. (8.3), v = 0) or, if disturbed, the column would buckle

in either of two lateral directions; the point at which this possible branching occurs

is called a bifurcation point; further bifurcation points occur at the higher values of

PCR(4π
2EI/l2, 9π2EI/l2, . . .).

Example 8.1
A uniform column of length L and flexural stiffness EI is simply supported at its ends

and has an additional elastic support at midspan. This support is such that if a lateral

displacement vc occurs at this point a restoring force kvc is generated at the point.

Derive an equation giving the buckling load of the column. If the buckling load is

4π2EI/L2 find the value of k. Also if the elastic support is infinitely stiff show that the

buckling load is given by the equation tan λL/2= λL/2 where λ = √
P/EI .

The column is shown in its displaced position in Fig. 8.5.The bending moment at any

section of the column is given by

M = Pv − kvc

2
z

so that, by comparison with Eq. (8.1)

EI
d2v

dz2
= −Pv + kvc

2
z

giving

d2v

dz2
+ λ2v = kvc

2EI
z (i)
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υ
υc

kυc

P
P

z

y

kυc

2

kυc

2
L

Fig. 8.5 Column of Example 8.1.

The solution of Eq. (i) is of standard form and is

v = A cos λz + B sin λz + kvc

2P
z

The constants A and B are found using the boundary conditions of the column which

are: v = 0 when z= 0, v = vc, when z=L/2 and (dv/dz)= 0 when z=L/2.

From the first of these, A= 0 while from the second

B = vc

sin (λL/2)

(

1 − kλ

4P

)

The third boundary condition gives, since vc �= 0, the required equation, i.e.

(

1 − kL

4P

)

cos
λL

2
+ k

2Pλ
sin

λL

2
= 0

Rearranging

P = kL

4

(

1 − tan (λL/2)

λL/2

)

If P (buckling load)= 4π2EI/L2 then λL/2= π so that k = 4P/L.

Finally, if k → ∞

tan
λL

2
= λL

2
(ii)

Note that Eq. (ii) is the transcendental equation which would be derived when deter-

mining the buckling load of a column of length L/2, built in at one end and pinned at

the other.
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8.2 Inelastic buckling

We have shown that the critical stress, Eq. (8.8), depends only on the elastic modulus

of the material of the column and the slenderness ratio l/r. For a given material the

critical stress increases as the slenderness ratio decreases; i.e. as the column becomes

shorter and thicker. A point is then reached when the critical stress is greater than the

yield stress of the material so that Eq. (8.8) is no longer applicable. For mild steel this

point occurs at a slenderness ratio of approximately 100, as shown in Fig. 8.6. We

therefore require some alternative means of predicting column behaviour at low values

of slenderness ratio.

It was assumed in the derivation of Eq. (8.8) that the stresses in the column remained

within the elastic range of the material so that the modulus of elasticity E(= dσ/dε) was

constant. Above the elastic limit dσ/dε depends upon the value of stress and whether

the stress is increasing or decreasing. Thus, in Fig. 8.7 the elastic modulus at the point

A is the tangent modulus Et if the stress is increasing but E if the stress is decreasing.

Fig. 8.6 Critical stress–slenderness ratio for a column.

Fig. 8.7 Elastic moduli for a material stressed above the elastic limit.
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Fig. 8.8 Determination of reduced elastic modulus.

Consider a column having a plane of symmetry and subjected to a compressive load

P such that the direct stress in the column P/A is above the elastic limit. If the column

is given a small deflection, v, in its plane of symmetry, then the stress on the concave

side increases while the stress on the convex side decreases. Thus, in the cross-section

of the column shown in Fig. 8.8(a) the compressive stress decreases in the area A1

and increases in the area A2, while the stress on the line nn is unchanged. Since these

changes take place outside the elastic limit of the material, we see, from our remarks

in the previous paragraph, that the modulus of elasticity of the material in the area

A1 is E while that in A2 is Et. The homogeneous column now behaves as if it were

non-homogeneous, with the result that the stress distribution is changed to the form

shown in Fig. 8.8(b); the linearity of the distribution follows from an assumption that

plane sections remain plane.

As the axial load is unchanged by the disturbance

∫ d1

0

σx dA =
∫ d2

0

σv dA (8.9)

Also, P is applied through the centroid of each end section a distance e from nn so that

∫ d1

0

σx(y1 + e) dA +
∫ d2

0

σv(y2 − e) dA = −Pv (8.10)

From Fig. 8.8(b)

σx = σ1

d1
y1 σv = σ2

d2
y2 (8.11)

The angle between two close, initially parallel, sections of the column is equal to the

change in slope d2v/dz2 of the column between the two sections. This, in turn, must be
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equal to the angle δφ in the strain diagram of Fig. 8.8(c). Hence

d2v

dz2
= σ1

Ed1
= σ2

Etd2
(8.12)

and Eq. (8.9) becomes, from Eqs (8.11) and (8.12)

E
d2v

dz2

∫ d1

0

y1dA − Et

d2v

dz2

∫ d2

0

y2 dA = 0 (8.13)

Further, in a similar manner, from Eq. (8.10)

d2v

dz2

(

E

∫ d1

0

y21 dA + Et

∫ d2

0

y22 dA

)

+ e
d2v

dz2

(

E

∫ d1

0

y1 dA − Et

∫ d2

0

y2 dA

)

= −Pv

(8.14)

The second term on the left-hand side of Eq. (8.14) is zero from Eq. (8.13). Therefore

we have

d2v

dz2
(EI1 + EtI2) = −Pv (8.15)

in which

I1 =
∫ d1

0

y21 dA and I2 =
∫ d2

0

y22 dA

the second moments of area about nn of the convex and concave sides of the column

respectively. Putting

ErI = EI1 + EtI2

or

Er = E
I1

I
+ Et

I2

I
(8.16)

where Er is known as the reduced modulus, gives

ErI
d2v

dz2
+ Pv = 0

Comparing this with Eq. (8.2) we see that if P is the critical load PCR then

PCR = π2ErI

l2e
(8.17)

and

σCR = π2Er

(le/r)2
(8.18)
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The above method for predicting critical loads and stresses outside the elastic range is

known as the reduced modulus theory. From Eq. (8.13) we have

E

∫ d1

0

y1 dA − Et

∫ d2

0

y2 dA = 0 (8.19)

which, together with the relationship d = d1 + d2, enables the position of nn to be

found.

It is possible that the axial load P is increased at the time of the lateral disturbance

of the column such that there is no strain reversal on its convex side. The compressive

stress therefore increases over the complete section so that the tangent modulus applies

over the whole cross-section. The analysis is then the same as that for column buckling

within the elastic limit except that Et is substituted for E. Hence the tangent modulus

theory gives

PCR = π2EtI

l2e
(8.20)

and

σCR = π2Et

(le/r2)
(8.21)

By a similar argument, a reduction in P could result in a decrease in stress over the

whole cross-section. The elastic modulus applies in this case and the critical load and

stress are given by the standard Euler theory; namely, Eqs (8.7) and (8.8).

In Eq. (8.16), I1 and I2 are together greater than I whileE is greater thanEt. It follows

that the reduced modulus Er is greater than the tangent modulus Et. Consequently,

buckling loads predicted by the reduced modulus theory are greater than buckling

loads derived from the tangent modulus theory, so that although we have specified

theoretical loading situationswhere the different theorieswould apply there still remains

the difficulty of deciding which should be used for design purposes.

Extensive experiments carried out on aluminium alloy columns by the aircraft indus-

try in the 1940s showed that the actual buckling load was approximately equal to the

tangent modulus load. Shanley (1947) explained that for columns with small imper-

fections, an increase of axial load and bending occur simultaneously. He then showed

analytically that after the tangent modulus load is reached, the strain on the concave

side of the column increases rapidly while that on the convex side decreases slowly. The

large deflection corresponding to the rapid strain increase on the concave side, which

occurs soon after the tangent modulus load is passed, means that it is only possible to

exceed the tangent modulus load by a small amount. It follows that the buckling load of

columns is given most accurately for practical purposes by the tangent modulus theory.

Empirical formulae have been used extensively to predict buckling loads, although

in view of the close agreement between experiment and the tangent modulus theory

they would appear unnecessary. Several formulae are in use; for example, the Rankine,

Straight-line and Johnson’s parabolic formulae are given in many books on elastic

stability.1
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8.3 Effect of initial imperfections

Obviously it is impossible in practice to obtain a perfectly straight homogeneous column

and to ensure that it is exactly axially loaded. An actual column may be bent with some

eccentricity of load. Such imperfections influence to a large degree the behaviour of the

column which, unlike the perfect column, begins to bend immediately the axial load is

applied.

Let us suppose that a column, initially bent, is subjected to an increasing axial load

P as shown in Fig. 8.9. In this case the bending moment at any point is proportional to

the change in curvature of the column from its initial bent position. Thus

EI
d2v

dz2
− EI

d2v0

dz2
− Pv (8.22)

which, on rearranging, becomes

d2v

dz2
+ λ2v = d2v0

dz2
(8.23)

where λ2 =P/EI. The final deflected shape, v, of the column depends upon the form

of its unloaded shape, v0. Assuming that

v0 =
∞
∑

n=1

An sin
nπz

l
(8.24)

and substituting in Eq. (8.23) we have

d2v

dz2
+ λ2v = −π2

l2

∞
∑

n=1

n2An sin
nπz

l

The general solution of this equation is

v = B cos λz + D sin λz +
∞
∑

n=1

n2An

n2 − α
sin

nπz

l

Fig. 8.9 Initially bent column.
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where B and D are constants of integration and α = λ2l2/π2. The boundary conditions

are v = 0 at z= 0 and l, giving B=D= 0 whence

v =
∞
∑

n=1

n2An

n2 − α
sin

nπz

l
(8.25)

Note that in contrast to the perfect column we are able to obtain a non-trivial solution

for deflection. This is to be expected since the column is in stable equilibrium in its

bent position at all values of P.

An alternative form for α is

α = Pl2

π2EI
= P

PCR
(see Eq. (8.5))

Thus α is always less than one and approaches unity when P approaches PCR so that the

first term in Eq. (8.25) usually dominates the series. A good approximation, therefore,

for deflection when the axial load is in the region of the critical load is

v = A1

1 − α
sin

πz

l
(8.26)

or at the centre of the column where z= l/2

v = A1

1 − P/PCR
(8.27)

in which A1 is seen to be the initial central deflection. If central deflections δ(= v −A1)

are measured from the initially bowed position of the column then from Eq. (8.27) we

obtain

A1

1 − P/PCR
− A1 = δ

which gives on rearranging

δ = PCR
δ

P
− A1 (8.28)

and we see that a graph of δ plotted against δ/P has a slope, in the region of the critical

load, equal to PCR and an intercept equal to the initial central deflection. This is the

well known Southwell plot for the experimental determination of the elastic buckling

load of an imperfect column.

Timoshenko1 also showed that Eq. (8.27) may be used for a perfectly straight column

with small eccentricities of column load.

Example 8.2
The pin-jointed column shown in Fig. 8.10 carries a compressive load P applied eccen-

trically at a distance e from the axis of the column. Determine the maximum bending

moment in the column.

The bending moment at any section of the column is given by

M = P(e + v)
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y

P
e

ν

z

e P

L

Fig. 8.10 Eccentrically loaded column of Example 8.2

Then, by comparison with Eq. (8.1)

EI
d2v

dz2
= −P(e + v)

giving

d2v

dz2
+ µ2v = −Pe

EI
(µ2 = P/EI) (i)

The solution of Eq. (i) is of standard form and is

v = A cosµz + B sinµz − e

The boundary conditions are: v = 0 when z= 0 and (dv/dz)= 0 when z=L/2.

From the first of these A= e while from the second

B = e tan
µL

2

The equation for the deflected shape of the column is then

v = e

[

cosµ(z − L/2)

cosµL/2
− 1

]

The maximum value of v occurs at midspan where z=L/2, i.e.

vmax = e

(

sec
µL

2
− 1

)

The maximum bending moment is given by

M(max) = Pe + Pvmax

so that

M(max) = Pe sec
µL

2
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8.4 Stability of beams under transverse and axial loads

Stresses and deflections in a linearly elastic beam subjected to transverse loads as

predicted by simple beam theory, are directly proportional to the applied loads. This

relationship is valid if the deflections are small such that the slight change in geom-

etry produced in the loaded beam has an insignificant effect on the loads themselves.

This situation changes drastically when axial loads act simultaneously with the trans-

verse loads. The internal moments, shear forces, stresses and deflections then become

dependent upon the magnitude of the deflections as well as the magnitude of the exter-

nal loads. They are also sensitive, as we observed in the previous section, to beam

imperfections such as initial curvature and eccentricity of axial load. Beams supporting

both axial and transverse loads are sometimes known as beam-columns or simply as

transversely loaded columns.

We consider first the case of a pin-ended beam carrying a uniformly distributed load

of intensity w per unit length and an axial load P as shown in Fig. 8.11. The bending

moment at any section of the beam is

M = Pv + wlz

2
− wz2

2
= −EI

d2v

dz2

giving

d2v

dz2
+ P

EI
v = w

2EI
(z2 − lz) (8.29)

The standard solution of Eq. (8.29) is

v = A cos λz + B sin λz + w

2P

(

z2 − lz − 2

λ2

)

where A and B are unknown constants and λ2 =P/EI. Substituting the boundary

conditions v = 0 at z= 0 and l gives

A = w

λ2P
B = w

λ2P sin λl
(l − cos λl)

Fig. 8.11 Bending of a uniformly loaded beam-column.
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so that the deflection is determinate for any value of w and P and is given by

v = w

λ2P

[

cos λz +
(

1 − cos λl

sin λl

)

sin λz

]

+ w

2P

(

z2 − lz − 2

λ2

)

(8.30)

In beam-columns, as in beams, we are primarily interested in maximum values of

stress and deflection. For this particular case the maximum deflection occurs at the

centre of the beam and is, after some transformation of Eq. (8.30)

vmax = w

λ2P

(

sec
λl

2
− 1

)

− wl2

8P
(8.31)

The corresponding maximum bending moment is

Mmax = −Pvmax − wl2

8

or, from Eq. (8.31)

Mmax = w

λ2

(

1 − sec
λl

2

)

(8.32)

We may rewrite Eq. (8.32) in terms of the Euler buckling load PCR = π2EI/l2 for a

pin-ended column. Hence

Mmax = wl2

π2

PCR

P

(

1 − sec
π

2

√

P

PCR

)

(8.33)

As P approaches PCR the bending moment (and deflection) becomes infinite. However,

the above theory is based on the assumption of small deflections (otherwise d2v/dz2

would not be a close approximation for curvature) so that such a deduction is invalid.

The indication is, though, that large deflections will be produced by the presence of a

compressive axial load no matter how small the transverse load might be.

Let us consider now the beam-column of Fig. 8.12 with hinged ends carrying a

concentrated load W at a distance a from the right-hand support. For

z ≤ l − a EI
d2v

dz2
= −M = −Pv − Waz

l
(8.34)

and for

z ≥ l − a EI
d2v

dz2
= −M = −Pv − W

l
(l − a)(l − z) (8.35)

Writing

λ2 = P

EI

Eq. (8.34) becomes

d2v

dz2
+ λ2v = −Wa

EIl
z
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Fig. 8.12 Beam-column supporting a point load.

the general solution of which is

v = A cos λz + B sin λz − Wa

Pl
z (8.36)

Similarly, the general solution of Eq. (8.35) is

v = C cos λz + D sin λz − W

Pl
(l − a)(l − z) (8.37)

where A,B,C and D are constants which are found from the boundary conditions as

follows.

When z= 0, v = 0, therefore from Eq. (8.36) A= 0. At z= l, v = 0 giving, from

Eq. (8.37), C = −D tan λl. At the point of application of the load the deflection and

slope of the beam given by Eqs (8.36) and (8.37) must be the same. Hence, equating

deflections

B sin λ(l − a) − Wa

Pl
(l − a) = D[ sin λ(l − a) − tan λl cos λ(l − a)] − Wa

Pl
(l − a)

and equating slopes

Bλ cos λ(l − a) − Wa

Pl
= Dλ[ cos λ(l − a) − tan λl sin λ(l − a)] + W

Pl
(l − a)

Solving the above equations forB andD and substituting forA, B, C andD in Eqs (8.36)

and (8.37) we have

v = W sin λa

Pλ sin λl
sin λz − Wa

Pl
z for z ≤ l − a (8.38)

v = W sin λ(l − a)

Pλ sin λl
sin λ(l − z) − W

Pl
(l − a)(l − z) for z ≥ l − a (8.39)

These equations for the beam-column deflection enable the bending moment and

resulting bending stresses to be found at all sections.

A particular case arises when the load is applied at the centre of the span. The

deflection curve is then symmetrical with a maximum deflection under the load of

vmax = W

2Pλ
tan

λl

2
− Wl

4p
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Fig. 8.13 Beam-column supporting end moments.

Finally, we consider a beam-column subjected to end momentsMA andMB in addi-

tion to an axial load P (Fig. 8.13). The deflected form of the beam-column may be

found by using the principle of superposition and the results of the previous case. First,

we imagine thatMB acts alone with the axial load P. If we assume that the point loadW

moves towards B and simultaneously increases so that the productWa= constant=MB

then, in the limit as a tends to zero, we have themomentMB applied at B. The deflection

curve is then obtained from Eq. (8.38) by substituting λa for sin λa (since λa is now

very small) and MB for Wa. Thus

v = MB

P

(

sin λz

sin λl
− z

l

)

(8.40)

In a similarway, wefind the deflection curve corresponding toMA acting alone. Suppose

thatW moves towardsA such that the productW (l−a)= constant=MA. Then as (l−a)

tends to zero we have sin λ(l − a)= λ(l − a) and Eq. (8.39) becomes

v = MA

P

[

sin λ(l − z)

sin λl
− (l − z)

l

]

(8.41)

The effect of the two moments acting simultaneously is obtained by superposition of

the results of Eqs (8.40) and (8.41). Hence for the beam-column of Fig. 8.13

v = MB

P

(

sin λz

sin λl
− z

l

)

+ MA

P

[

sin λ(l − z)

sin λl
− (l − z)

l

]

(8.42)

Equation (8.42) is also the deflected form of a beam-column supporting eccentrically

applied end loads at A and B. For example, if eA and eB are the eccentricities of P at

the ends A and B, respectively, then MA =PeA,MB =PeB, giving a deflected form of

v = eB

(

sin λz

sin λl
− z

l

)

+ eA

[

sin λ(l − z)

sin λl
− (l − z)

l

]

(8.43)

Other beam-column configurations featuring a variety of end conditions and loading

regimes may be analysed by a similar procedure.

8.5 Energy method for the calculation of buckling
loads in columns

The fact that the total potential energy of an elastic body possesses a stationary value

in an equilibrium state may be used to investigate the neutral equilibrium of a buckled
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Fig. 8.14 Shortening of a column due to buckling.

column. In particular, the energy method is extremely useful when the deflected form

of the buckled column is unknown and has to be ‘guessed’.

First, we shall consider the pin-ended column shown in its buckled position in

Fig. 8.14. The internal or strain energy U of the column is assumed to be produced by

bending action alone and is given by the well known expression

U =
∫ l

0

M2

2EI
dz (8.44)

or alternatively, since EI d2v/dz2 = −M

U = EI

2

∫ l

0

(

d2v

dz2

)2

dz (8.45)

The potential energy V of the buckling load PCR, referred to the straight position of the

column as the datum, is then

V = −PCRδ

where δ is the axial movement of PCR caused by the bending of the column from its

initially straight position. By reference to Fig. 7.15(b) and Eq. (7.41) we see that

δ = 1

2

∫ l

0

(

dv

dz

)2

dz

giving

V = −PCR

2

∫ l

0

(

dv

dz

)2

dz (8.46)

The total potential energy of the column in the neutral equilibrium of its buckled state

is therefore

U + V =
∫ l

0

M2

2EI
dz − PCR

2

∫ l

0

(

dv

dz

)2

dz (8.47)

or, using the alternative form of U from Eq. (8.45)

U + V = EI

2

∫ l

0

(

d2v

dz2

)2

dz − PCR

2

∫ l

0

(

dv

dz

)2

dz (8.48)
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We have seen in Chapter 7 that exact solutions of plate bending problems are obtain-

able by energy methods when the deflected shape of the plate is known. An identical

situation exists in the determination of critical loads for column and thin plate buckling

modes. For the pin-ended column under discussion a deflected form of

v =
∞
∑

n=1

An sin
nπz

l
(8.49)

satisfies the boundary conditions of

(v)z=0 = (v)z=l = 0

(

d2v

dz2

)

z=0

=
(

d2v

dz2

)

z=l

= 0

and is capable, within the limits forwhich it is valid and if suitable values for the constant

coefficients An are chosen, of representing any continuous curve. We are therefore in a

position to find PCR exactly. Substituting Eq. (8.49) into Eq. (8.48) gives

U + V = EI

2

∫ l

0

(π

l

)4
( ∞

∑

n=1

n2An sin
nπz

l

)2

dz

− PCR

2

∫ l

0

(π

l

)2
( ∞

∑

n=1

nAn cos
nπz

l

)2

dz (8.50)

The product terms in both integrals of Eq. (8.50) disappear on integration, leaving only

integrated values of the squared terms. Thus

U + V = π4EI

4l3

∞
∑

n=1

n4A2
n − π2PCR

4l

∞
∑

n=1

n2A2
n (8.51)

Assigning a stationary value to the total potential energy of Eq. (8.51) with respect to

each coefficient An in turn, then taking An as being typical, we have

∂(U + V )

∂An

= π4EIn4An

2l3
− π2PCRn

2An

2l
= 0

from which

PCR = π2EIn2

l2
as before.

We see that each term in Eq. (8.49) represents a particular deflected shape with a

corresponding critical load. Hence the first term represents the deflection of the column

shown in Fig. 8.14, with PCR = π2EI/l2. The second and third terms correspond to the

shapes shown in Fig. 8.3, having critical loads of 4π2EI/l2 and 9π2EI/l2 and so on.

Clearly the column must be constrained to buckle into these more complex forms. In

other words the column is being forced into an unnatural shape, is consequently stiffer

and offers greater resistance to buckling as we observe from the higher values of critical
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Fig. 8.15 Buckling load for a built-in column by the energy method.

load. Such buckling modes, as stated in Section 8.1, are unstable and are generally of

academic interest only.

If the deflected shape of the column is known it is immaterial which of Eqs (8.47)

or (8.48) is used for the total potential energy. However, when only an approximate

solution is possible Eq. (8.47) is preferable since the integral involving bendingmoment

depends upon the accuracy of the assumed form of v, whereas the corresponding term in

Eq. (8.48) depends upon the accuracy of d2v/dz2. Generally, for an assumed deflection

curve v is obtained much more accurately than d2v/dz2.

Suppose that the deflection curve of a particular column is unknown or extremely

complicated. We then assume a reasonable shape which satisfies, as far as possible,

the end conditions of the column and the pattern of the deflected shape (Rayleigh–Ritz

method). Generally, the assumed shape is in the form of a finite series involving a series

of unknown constants and assumed functions of z. Let us suppose that v is given by

v = A1 f1(z) + A2 f2(z) + A3 f3(z)

Substitution in Eq. (8.47) results in an expression for total potential energy in terms of

the critical load and the coefficientsA1,A2 andA3 as the unknowns.Assigning stationary

values to the total potential energy with respect to A1, A2 and A3 in turn produces three

simultaneous equations from which the ratios A1/A2, A1/A3 and the critical load are

determined. Absolute values of the coefficients are unobtainable since the deflections

of the column in its buckled state of neutral equilibrium are indeterminate.

As a simple illustration consider the column shown in its buckled state in Fig. 8.15.An

approximate shape may be deduced from the deflected shape of a tip-loaded cantilever.

Thus

v = v0z
2

2l3
(3l − z)

This expression satisfies the end-conditions of deflection, viz. v = 0 at z= 0 and v = v0
at z= l. In addition, it satisfies the conditions that the slope of the column is zero at

the built-in end and that the bending moment, i.e. d2v/dz2, is zero at the free end. The

bending moment at any section isM =PCR(v0 − v) so that substitution forM and v in

Eq. (8.47) gives

U + V = P2
CRv20

2EI

∫ l

0

(

1 − 3z2

2l2
+ z3

2l3

)2

dz − PCR

2

∫ l

0

(

3v0

2l3

)3

z2(2l − z)2 dz
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Integrating and substituting the limits we have

U + V = 17

35

P2
CRv20l

2EI
− 3

5
PCR

v20

l

Hence

∂(U + V )

∂v0
= 17

35

P2
CRv0l

EI
− 6PCRv0

5l
= 0

from which

PCR = 42EI

17l2
= 2.471

EI

l2

This value of critical load compares with the exact value (see Table 8.1) of

π2EI/4l2 = 2.467EI/l2; the error, in this case, is seen to be extremely small. Approxi-

mate values of critical load obtained by the energy method are always greater than the

correct values. The explanation lies in the fact that an assumed deflected shape implies

the application of constraints in order to force the column to take up an artificial shape.

This, as we have seen, has the effect of stiffening the columnwith a consequent increase

in critical load.

It will be observed that the solution for the above examplemay be obtained by simply

equating the increase in internal energy (U) to the work done by the external critical

load (−V ). This is always the case when the assumed deflected shape contains a single

unknown coefficient, such as v0 in the above example.

8.6 Flexural–torsional buckling of thin-walled columns

It is recommended that the reading of this section be delayed until after Chapter 27 has

been studied.

In some instances thin-walled columns of open cross-section do not buckle in bending

as predicted by the Euler theory but twist without bending, or bend and twist simul-

taneously, producing flexural–torsional buckling. The solution of this type of problem

relies on the theory presented in Chapter 27 for the torsion of open section beams

subjected to warping (axial) restraint. Initially, however, we shall establish a useful

analogy between the bending of a beam and the behaviour of a pin-ended column.

The bending equation for a simply supported beam carrying a uniformly distributed

load of intensity wy and having Cx and Cy as principal centroidal axes is

EIxx
d4v

dz4
= wy (see Chapter 16) (8.52)

Also, the equation for the buckling of a pin-ended column about the Cx axis is (see

Eq. (8.1))

EIxx
d2v

dz2
= −PCRv (8.53)
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Fig. 8.16 Flexural–torsional buckling of a thin-walled column.

Differentiating Eq. (8.53) twice with respect to z gives

EIxx
d4v

dz4
= −PCR

d2v

dz2
(8.54)

Comparing Eqs (8.52) and (8.54) we see that the behaviour of the column may be

obtained by considering it as a simply supported beam carrying a uniformly distributed

load of intensity wy given by

wy = −PCR
d2v

dz2
(8.55)

Similarly, for buckling about the Cy axis

wx = −PCR
d2u

dz2
(8.56)

Consider now a thin-walled column having the cross-section shown in Fig. 8.16 and

suppose that the centroidal axes Cxy are principal axes (see Chapter 16); S(xS, yS) is

the shear centre of the column (see Chapter 17) and its cross-sectional area is A. Due

to the flexural–torsional buckling produced, say, by a compressive axial load P the

cross-section will suffer translations u and v parallel to Cx and Cy, respectively and a

rotation θ, positive anticlockwise, about the shear centre S. Thus, due to translation,
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C and S move to C′ and S′ and then, due to rotation about S′, C′ moves to C′′. The total
movement of C, uC, in the x direction is given by

uc = u + C′D = u + C′C′′ sin α (S′Ĉ′C′′ ≃ 90◦)

But

C′C′′ = C′S′θ = CSθ

Hence

uC = u + θCS sin α = u + ySθ (8.57)

Also the total movement of C in the y direction is

vC = v − DC′′ = v − C′C′′ cosα = v − θCS cosα

so that

vC = v − xsθ (8.58)

Since at this particular cross-section of the column the centroidal axis has been dis-

placed, the axial load P produces bending moments about the displaced x and y axes

given, respectively, by

Mx = PvC = P(v − xSθ) (8.59)

and

My = PuC = P(u + ySθ) (8.60)

From simple beam theory (Chapter 16)

EIxx
d2v

dz2
= −Mx = −P(v − xSθ) (8.61)

and

EIyy
d2u

dz2
= −My = −P(u + ySθ) (8.62)

where Ixx and Iyy are the second moments of area of the cross-section of the column

about the principal centroidal axes, E isYoung’s modulus for the material of the column

and z is measured along the centroidal longitudinal axis.

The axial load P on the column will, at any cross-section, be distributed as a uniform

direct stress σ. Thus, the direct load on any element of length δs at a point B(xB, yB) is

σt ds acting in a direction parallel to the longitudinal axis of the column. In a similar

manner to the movement of C to C′′ the point B will be displaced to B′′. The horizontal
movement of B in the x direction is then

uB = u + B′F = u + B′B′′ cosβ

But

B′B′′ = S′B′θ = SBθ
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Hence

uB = u + θSB cosβ

or

uB = u + (yS − yB)θ (8.63)

Similarly the movement of B in the y direction is

vB = v − (xS − xB)θ (8.64)

Therefore, from Eqs (8.63) and (8.64) and referring to Eqs (8.55) and (8.56), we see

that the compressive load on the element δs at B, σtδs, is equivalent to lateral loads

−σtδs
d2

dz2
[u + (yS − yB)θ] in the x direction

and

−σtδs
d2

dz2
[v − (xS − xB)θ] in the y direction

The lines of action of these equivalent lateral loads do not pass through the displaced

position S′ of the shear centre and therefore produce a torque about S′ leading to the

rotation θ. Suppose that the element δs at B is of unit length in the longitudinal z

direction. The torque per unit length of the column δT (z) acting on the element at B is

then given by

δT (z) = −σtδs
d2

dz2
[u + (yS − yB)θ](yS − yB)

+ σtδs
d2

dz2
[v − (xS − xB)θ](xS − xB) (8.65)

Integrating Eq. (8.65) over the complete cross-section of the column gives the torque

per unit length acting on the column, i.e.

T (z) = −
∫

Sect

σt
d2u

dz2
( yS − yB)ds −

∫

Sect

σt( yS − yB)
2 d

2θ

dz2
ds

+
∫

Sect

σt
d2v

dz2
(xS − xB)ds −

∫

Sect

σt(xS − xB)
2 d

2θ

dz2
ds (8.66)
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Expanding Eq. (8.66) and noting that σ is constant over the cross-section, we obtain

T (z) = −σ
d2u

dz2
yS

∫

Sect

t ds + σ
d2u

dz2

∫

Sect

tyB ds − σ
d2θ

dz2
y2S

∫

Sect

t ds

+ σ
d2θ

dz2
2yS

∫

Sect

tyB ds − σ
d2θ

dz2

∫

Sect

ty2B ds + σ
d2v

dz2
xS

∫

Sect

t ds

− σ
d2v

dz2

∫

Sect

txB ds − σ
d2θ

dz2
x2S

∫

Sect

t ds + σ
d2θ

dz2
2xS

∫

Sect

txB ds

− σ
d2θ

dz2

∫

Sect

tx2B ds (8.67)

Equation (8.67) may be rewritten

T (z) = P

(

xS
d2v

dz2
− yS

d2u

dz2

)

− P

A

d2θ

dz2
(Ay2S + Ixx + Ax2S + Iyy) (8.68)

In Eq. (8.68) the term Ixx + Iyy +A(x2S + y2S) is the polar second moment of area I0 of

the column about the shear centre S. Thus Eq. (8.68) becomes

T (z) = P

(

xS
d2v

dz2
− yS

d2u

dz2

)

− I0
P

A

d2θ

dz2
(8.69)

Substituting for T (z) from Eq. (8.69) in Eq. (27.11), the general equation for the torsion

of a thin-walled beam, we have

EŴ
d4θ

dz4
−

(

GJ − I0
P

A

)

d2θ

dz2
− PxS

d2v

dz2
+ PyS

d2u

dz2
= 0 (8.70)

Equations (8.61), (8.62) and (8.70) form three simultaneous equations which may be

solved to determine the flexural–torsional buckling loads.

As an example, consider the case of a column of length L in which the ends are

restrained against rotation about the z axis and against deflection in the x and y directions;

the ends are also free to rotate about the x and y axes and are free to warp. Thus

u= v = θ = 0 at z= 0 and z=L. Also, since the column is free to rotate about the x and

y axes at its ends, Mx =My = 0 at z= 0 and z=L, and from Eqs (8.61) and (8.62)

d2v

dz2
= d2u

dz2
= 0 at z = 0 and z = L

Further, the ends of the column are free to warp so that

d2θ

dz2
= 0 at z = 0 and z = L (see Eq. (27.1))

An assumed buckled shape given by

u = A1 sin
πz

L
v = A2 sin

πz

L
θ = A3 sin

πz

L
(8.71)
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in whichA1, A2 andA3 are unknown constants, satisfies the above boundary conditions.

Substituting for u, v and θ from Eqs (8.71) into Eqs (8.61), (8.62) and (8.70), we have

(

P − π2EIxx

L2

)

A2 − PxSA3 = 0

(

P − π2EIyy

L2

)

A1 + PySA3 = 0

PySA1 − PxSA2 −
(

π2EŴ

L2
+ GJ − I0

A
P

)

A3 = 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(8.72)

For non-zero values of A1, A2 and A3 the determinant of Eqs (8.72) must equal zero, i.e.

∣

∣

∣

∣

∣

∣

0 P − π2EIxx/L
2 −PxS

P − π2EIyy/L
2 0 PyS

PyS −PxS I0P/A − π2EŴ/L2 − GJ

∣

∣

∣

∣

∣

∣

= 0 (8.73)

The roots of the cubic equation formed by the expansion of the determinant give the

critical loads for the flexural–torsional buckling of the column; clearly the lowest value

is significant.

In the case where the shear centre of the column and the centroid of area coincide,

i.e. the column has a doubly symmetrical cross-section, xS = yS = 0 and Eqs (8.61),

(8.62) and (8.70) reduce, respectively, to

EIxx
d2v

dz2
= −Pv (8.74)

EIyy
d2u

dz2
= −Pu (8.75)

EŴ
d4θ

dz4

(

GJ − I0
P

A

)

d2θ

dz2
= 0 (8.76)

Equations (8.74), (8.75) and (8.76), unlike Eqs (8.61), (8.62) and (8.70), are uncoupled

and provide three separate values of buckling load. Thus, Eqs (8.74) and (8.75) give

values for the Euler buckling loads about the x and y axes respectively, while Eq. (8.76)

gives the axial load which would produce pure torsional buckling; clearly the buckling

load of the column is the lowest of these values. For the column whose buckled shape

is defined by Eqs (8.71), substitution for v, u and θ in Eqs (8.74), (8.75) and (8.76),

respectively gives

PCR(xx) = π2EIxx

L2
PCR(yy) = π2EIyy

L2
PCR(θ) = A

I0

(

GJ + π2EŴ

L2

)

(8.77)

Example 8.3
A thin-walled pin-ended column is 2m long and has the cross-section shown in

Fig. 8.17. If the ends of the column are free to warp determine the lowest value of axial
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Fig. 8.17 Column section of Example 8.3.

loadwhichwill cause buckling and specify the bucklingmode. TakeE = 75 000N/mm2

and G= 21 000N/mm2.

Since the cross-section of the column is doubly-symmetrical, the shear centre coin-

cides with the centroid of area and xS = yS = 0; Eq. (8.74), (8.75) and (8.76) therefore

apply. Further, the boundary conditions are those of the column whose buckled shape

is defined by Eqs (8.71) so that the buckling load of the column is the lowest of the

three values given by Eqs (8.77).

The cross-sectional area A of the column is

A = 2.5(2 × 37.5 + 75) = 375mm2

The second moments of area of the cross-section about the centroidal axes Cxy are (see

Chapter 16), respectively

Ixx = 2 × 37.5 × 2.5 × 37.52 + 2.5 × 753/12 = 3.52 × 105mm4

Iyy = 2 × 2.5 × 37.53/12 = 0.22 × 105mm4

The polar second moment of area I0 is

I0 = Ixx + Iyy + A(x2S + y2S) (see derivation of Eq. (8.69))

i.e.

I0 = 3.52 × 105 + 0.22 × 105 = 3.74 × 105mm4

The torsion constant J is obtained using Eq. (18.11) which gives

J = 2 × 37.5 × 2.53/3 + 75 × 2.53/3 = 781.3mm4

Finally, Ŵ is found using the method of Section 27.2 and is

Ŵ = 2.5 × 37.53 × 752/24 = 30.9 × 106mm6
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Substituting the above values in Eqs (8.77) we obtain

PCR(xx) = 6.5 × 104N PCR(yy) = 0.41 × 104N PCR(θ) = 2.22 × 104N

The column will therefore buckle in bending about the Cy axis when subjected to an

axial load of 0.41× 104N.

Equation (8.73) for the column whose buckled shape is defined by Eqs (8.71) may

be rewritten in terms of the three separate buckling loads given by Eqs (8.77). Thus
∣

∣

∣

∣

∣

∣

0 P − PCR(xx) −PxS
P − PCR(yy) 0 PyS

PyS −PxS I0(P − PCR(θ))/A

∣

∣

∣

∣

∣

∣

= 0 (8.78)

If the column has, say, Cx as an axis of symmetry, then the shear centre lies on this axis

and yS = 0. Equation (8.78) thereby reduces to
∣

∣

∣

∣

P − PCR(xx) −PxS
−PxS I0(P − PCR(θ))/A

∣

∣

∣

∣

= 0 (8.79)

The roots of the quadratic equation formed by expanding Eq. (8.79) are the values of

axial load which will produce flexural–torsional buckling about the longitudinal and x

axes. If PCR(yy) is less than the smallest of these roots the column will buckle in pure

bending about the y axis.

Example 8.4
A column of length 1m has the cross-section shown in Fig. 8.18. If the ends of the

column are pinned and free to warp, calculate its buckling load; E = 70 000N/mm2,

G= 30 000N/mm2.

In this case the shear centre S is positioned on the Cx axis so that yS = 0 and Eq. (8.79)

applies. The distance x̄ of the centroid of area C from the web of the section is found

Fig. 8.18 Column section of Example 8.4.
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by taking first moments of area about the web. Thus

2(100 + 100 + 100)x̄ = 2 × 2 × 100 × 50

which gives

x̄ = 33.3mm

The position of the shear centre S is found using the method of Example 17.1; this gives

xS = −76.2mm. The remaining section properties are found by the methods specified

in Example 8.3 and are listed below

A = 600mm2 Ixx = 1.17 × 106mm4 Iyy = 0.67 × 106mm4

I0 = 5.32 × 106mm4 J = 800mm4 Ŵ = 2488 × 106mm6

From Eq. (8.77)

PCR(yy) = 4.63 × 105N PCR(xx) = 8.08 × 105N PCR(θ) = 1.97 × 105N

Expanding Eq. (8.79)

(P − PCR(xx))(P − PCR(θ))I0/A − P2x2S = 0 (i)

Rearranging Eq. (i)

P2(1 − Ax2S/I0) − P(PCR(xx) + PCR(θ)) + PCR(xx)PCR(θ) = 0 (ii)

Substituting the values of the constant terms in Eq. (ii) we obtain

P2 − 29.13 × 105P + 46.14 × 1010 = 0 (iii)

The roots of Eq. (iii) give two values of critical load, the lowest of which is

P = 1.68 × 105N

It can be seen that this value of flexural–torsional buckling load is lower than any of

the uncoupled buckling loads PCR(xx), PCR(yy) or PCR(θ); the reduction is due to the

interaction of the bending and torsional buckling modes.

Example 8.5
A thin walled column has the cross-section shown in Fig. 8.19, is of length L and is

subjected to an axial load through its shear centre S. If the ends of the column are

prevented from warping and twisting determine the value of direct stress when failure

occurs due to torsional buckling.

The torsion bending constant Ŵ is found using the method described in Section 27.2.

The position of the shear centre is given but is obvious by inspection. The swept area

2λAR,0 is determined as a function of s and its distribution is shown in Fig. 8.20. The

centre of gravity of the ‘wire’ is found by taking moments about the s axis.
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Fig. 8.19 Section of column of Example 8.5.
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Fig. 8.20 Determination of torsion bending constant for column section of Example 8.5.

Then

2A′
R5td = td

(

d2

2
+ 5d2

4
+ 3d2

2
+ 5d2

4
+ d2

2

)

which gives

2A′
R = d2

The torsion bending constant is then the ‘moment of inertia’ of the ‘wire’ and is

Ŵ = 2td
1

3
(d2)2 + td

3

(

d2

2

)2

× 2 + td

(

d2

2

)2
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from which

Ŵ = 13

12
td5

Also the torsion constant J is given by (see Section 3.4)

J =
∑ st3

3
= 5dt3

3

The shear centre of the section and the centroid of area coincide so that the torsional

buckling load is given by Eq. (8.76). Rewriting this equation

d4θ

dz4
+ µ2 d

2θ

dz2
= 0 (i)

where

µ2 = (σI0 − GJ)/EŴ (σ = P/A)

The solution of Eq. (i) is

θ = A cosµz + B sinµz + Cz + D (ii)

The boundary conditions are θ = 0 when z= 0 and z=L and since the warping is

suppressed at the ends of the beam

dθ

dz
= 0 when z = 0 and z = L (see Eq. (18.19))

Putting θ = 0 at z= 0 in Eq. (ii)

0 = A + D

or

A = −D

Also

dθ

dz
= −µA sinµz + µB cosµz + C

and since (dθ/dz)= 0 at z= 0

C = −µB

When z=L, θ = 0 so that, from Eq. (ii)

0 = A cosµL + B sinµL + CL + D

which may be rewritten

0 = B(sinµL − µL) + A( cosµL − 1) (iii)

Then for (dθ/dz)= 0 at z=L

0 = µB cosµL − µA sinµL − µB
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or

0 = B(cosµL − 1) − A sinµL (iv)

Eliminating A from Eqs (iii) and (iv)

0 = B[2(1 − cosµL) − µL sinµL] (v)

Similarly, in terms of the constant C

0 = −C[2(1 − cosµL) − µL sinµL] (vi)

or

B = −C

But B= −C/µ so that to satisfy both equations B=C = 0 and

θ = A cosµz − A = A( cosµz − 1) (vii)

Since θ = 0 at z= l

cosµL = 1

or

µL = 2nπ

Therefore

µ2L2 = 4n2π2

or

σI0 − GJ

EŴ
= 4n2π2

L2

The lowest value of torsional buckling load corresponds to n= 1 so that, rearranging

the above

σ = 1

I0

(

GJ + 4π2EŴ

L2

)

(viii)

The polar second moment of area I0 is given by

I0 = Ixx + Iyy (see Ref. 2)

ie

I0 = 2

(

td d2 + td

3

3
)

+ 3td3

12
+ 2td

d2

4

which gives

I0 = 4ltd3

12

Substituting for I0, J and Ŵ in Eq. (viii)

σ = 4

4ld3

(

sgt2 + 13π2Ed4

L2

)
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Problems

P.8.1 The system shown in Fig. P.8.1 consists of two bars AB and BC, each of

bending stiffness EI elastically hinged together at B by a spring of stiffness K (i.e.

bending moment applied by spring=K × change in slope across B).

RegardingA and C as simple pin-joints, obtain an equation for the first buckling load

of the system.What are the lowest buckling loads when (a) K → ∞, (b) EI → ∞. Note

that B is free to move vertically.

Ans. µK/tanµl.

Fig. P.8.1

P.8.2 Apin-ended column of length l and constant flexural stiffnessEI is reinforced

to give a flexural stiffness 4EI over its central half (see Fig. P.8.2).

Fig. P.8.2

Considering symmetric modes of buckling only, obtain the equation whose roots

yield the flexural buckling loads and solve for the lowest buckling load.

Ans. tanµl/8= 1/
√
2,P= 24.2EI/l2

P.8.3 A uniform column of length l and bending stiffness EI is built-in at one end

and free at the other and has been designed so that its lowest flexural buckling load is

P (see Fig. P.8.3).

Fig. P.8.3
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Subsequently it has to carry an increased load, and for this it is provided with a lateral

spring at the free end. Determine the necessary spring stiffness k so that the buckling

load becomes 4P.

Ans. k = 4Pµ/(µl − tanµl ).

P.8.4 A uniform, pin-ended column of length l and bending stiffness EI has an

initial curvature such that the lateral displacement at any point between the column and

the straight line joining its ends is given by

v0 = a
4z

l2
(l − z) (see Fig. P.8.4)

Show that the maximum bending moment due to a compressive end load P is given by

Mmax = − 8aP

(λl)2

(

sec
λl

2
− 1

)

where

λ2 = P/EI

Fig. P.8.4

P.8.5 The uniform pin-ended column shown in Fig. P.8.5 is bent at the centre so

that its eccentricity there is δ. If the two halves of the column are otherwise straight and

have a flexural stiffness EI, find the value of the maximum bending moment when the

column carries a compression load P.

Ans. −P
2δ

l

√

EI

P
tan

√

P

EI

l

2
.

Fig. P.8.5

P.8.6 A straight uniform column of length l and bending stiffness EI is subjected

to uniform lateral loading w/unit length. The end attachments do not restrict rotation
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of the column ends. The longitudinal compressive force P has eccentricity e from the

centroids of the end sections and is placed so as to oppose the bending effect of the

lateral loading, as shown in Fig. P.8.6. The eccentricity e can be varied and is to be

adjusted to the valuewhich, for given values ofP andw, will result in the leastmaximum

bending moment on the column. Show that

e = (w/Pµ2) tan2 µl/4

where

µ2 = P/EI

Deduce the end moment which will give the optimum condition when P tends to

zero.

Ans. wl2/16.

Fig. P.8.6

P.8.7 The relation between stress σ and strain ε in compression for a certain

material is

10.5 × 106ε = σ + 21 000
( σ

49 000

)16

Assuming the tangent modulus equation to be valid for a uniform strut of this material,

plot the graph of σb against l/r where σb is the flexural buckling stress, l the equivalent

pin-ended length and r the least radius of gyration of the cross-section.

Estimate the flexural buckling load for a tubular strut of this material, of 1.5 units

outside diameter and 0.08 units wall thickness with effective length 20 units.

Ans. 14 454 force units.

P.8.8 A rectangular portal frameABCD is rigidly fixed to a foundation at A and D

and is subjected to a compression load P applied at each end of the horizontal member

BC (see Fig. P.8.8). If the members all have the same bending stiffness EI show that

the buckling loads for modes which are symmetrical about the vertical centre line are

given by the transcendental equation

λa

2
= −1

2

(a

b

)

tan

(

λa

2

)

where

λ2 = P/EI
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Fig. P.8.8

P.8.9 A compressionmember (Fig. P.8.9) is made of circular section tube, diameter

d, thickness t. The member is not perfectly straight when unloaded, having a slightly

bowed shape which may be represented by the expression

v = δ sin
(πz

l

)

Fig. P.8.9

Show that when the load P is applied, the maximum stress in the member can be

expressed as

σmax = P

πdt

[

1 + 1

1 − α

4δ

d

]

where

α = P/Pe, Pe = π2EI/l2

Assume t is small compared with d so that the following relationships are applicable:

Cross-sectional area of tube= πdt.

Second moment of area of tube= πd3t/8.

P.8.10 Figure P.8.10 illustrates an idealized representation of part of an aircraft

control circuit. A uniform, straight bar of length a and flexural stiffness EI is built-in

at the end A and hinged at B to a link BC, of length b, whose other end C is pinned so

that it is free to slide along the line ABC between smooth, rigid guides. A, B and C are

initially in a straight line and the system carries a compression force P, as shown.
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Fig. P.8.10

Assuming that the link BC has a sufficiently high flexural stiffness to prevent its

buckling as a pin-ended strut, show, by setting up and solving the differential equation

for flexure of AB, that buckling of the system, of the type illustrated in Fig. P.8.10,

occurs when P has such a value that

tan λa = λ(a + b)

where

λ2 = P/EI

P.8.11 A pin-ended column of length l has its central portion reinforced, the second

moment of its area being I2 while that of the end portions, each of length a, is I1.

Use the energy method to determine the critical load of the column, assuming that its

centre-line deflects into the parabola v = kz(l− z) and taking the more accurate of the

two expressions for the bending moment.

In the case where I2 = 1.6I1 and a= 0.2l find the percentage increase in strength

due to the reinforcement, and compare it with the percentage increase in weight on the

basis that the radius of gyration of the section is not altered.

Ans. PCR = 14.96EI1/l
2, 52%, 36%.

P.8.12A tubular column of length l is tapered in wall-thickness so that the area and

the second moment of area of its cross-section decrease uniformly from A1 and I1 at its

centre to 0.2A1 and 0.2I1 at its ends.

Assuming a deflected centre-line of parabolic form, and taking the more correct form

for the bending moment, use the energy method to estimate its critical load when tested

between pin-centres, in terms of the above data and Young’s modulus E. Hence show

that the saving in weight by using such a column instead of one having the same radius

of gyration and constant thickness is about 15%.

Ans. 7.01EI1/l
2.

P.8.13 A uniform column (Fig. P.8.13), of length l and bending stiffness EI, is

rigidly built-in at the end z= 0 and simply supported at the end z= l. The column is

also attached to an elastic foundation of constant stiffness k/unit length.

Representing the deflected shape of the column by a polynomial

v =
p

∑

n=0

anη
n, where η = z/l
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Fig. P.8.13

determine the form of this function by choosing a minimum number of terms p such

that all the kinematic (geometric) and static boundary conditions are satisfied, allowing

for one arbitrary constant only.

Using the result thus obtained, find an approximation to the lowest flexural buckling

load PCR by the Rayleigh–Ritz method.

Ans. PCR = 21.05EI/l2 + 0.09kl2.

P.8.14 Figure P.8.14 shows the doubly symmetrical cross-section of a thin-walled

column with rigidly fixed ends. Find an expression, in terms of the section dimensions

and Poisson’s ratio, for the column length for which the purely flexural and the purely

torsional modes of instability would occur at the same axial load.

In which mode would failure occur if the length were less than the value found? The

possibility of local instability is to be ignored.

Ans. l = (2πb2/t)
√
(1 + ν)/255. Torsion.

Fig. P.8.14

P.8.15 A column of length 2l with the doubly symmetric cross-section shown in

Fig. P.8.15 is compressed between the parallel platens of a testing machine which fully

prevents twisting and warping of the ends.

Using the data given below, determine the average compressive stress at which the

column first buckles in torsion

l = 500mm, b = 25.0mm, t = 2.5mm, E = 70 000N/mm2, E/G = 2.6

Ans. σCR = 282N/mm2.
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Fig. P.8.15

P.8.16 A pin-ended column of length 1.0m has the cross-section shown in

Fig. P.8.16. If the ends of the column are free to warp determine the lowest value

of axial load which will cause the column to buckle, and specify the mode. Take

E = 70 000N/mm2 and G= 25 000N/mm2.

Ans. 5527N. Column buckles in bending about an axis in the plane of its web.

Fig. P.8.16

P.8.17 A pin-ended column of height 3.0m has a circular cross-section of diameter

80mm, wall thickness 2.0mm and is converted to an open section by a narrow longi-

tudinal slit; the ends of the column are free to warp. Determine the values of axial load

whichwould cause the column to buckle in (a) pure bending and (b) pure torsion. Hence

determine the value of the flexural–torsional buckling load. Take E = 70 000N/mm2

and G= 22 000N/mm2.

Note: the position of the shear centre of the column section may be found using

the method described in Chapter 17.

Ans. (a) 3.09× 104N, (b) 1.78× 104N, 1.19× 104N.
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Thin plates

We shall see in Chapter 12 when we examine the structural components of aircraft

that they consist mainly of thin plates stiffened by arrangements of ribs and stringers.

Thin plates under relatively small compressive loads are prone to buckle and so must

be stiffened to prevent this. The determination of buckling loads for thin plates in

isolation is relatively straightforward but when stiffened by ribs and stringers, the

problem becomes complex and frequently relies on an empirical solution. In fact it

may be the stiffeners which buckle before the plate and these, depending on their

geometry, may buckle as a column or suffer local buckling of, say, a flange.

In this chapter we shall present the theory for the determination of buckling loads of

flat plates and then examine some of the different empirical approaches which various

researchers have suggested. In addition we shall investigate the particular case of flat

plates which, when reinforced by horizontal flanges and vertical stiffeners, form the

spars of aircraft wing structures; these are known as tension field beams.

9.1 Buckling of thin plates

A thin plate may buckle in a variety of modes depending upon its dimensions, the

loading and the method of support. Usually, however, buckling loads are much lower

than those likely to cause failure in the material of the plate. The simplest form of

buckling arises when compressive loads are applied to simply supported opposite edges

and the unloaded edges are free, as shown in Fig. 9.1. A thin plate in this configuration

Fig. 9.1 Buckling of a thin flat plate.
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behaves in exactly the same way as a pin-ended column so that the critical load is that

predicted by the Euler theory. Once this critical load is reached the plate is incapable

of supporting any further load. This is not the case, however, when the unloaded edges

are supported against displacement out of the xy plane. Buckling, for such plates, takes

the form of a bulging displacement of the central region of the plate while the parts

adjacent to the supported edges remain straight. These parts enable the plate to resist

higher loads; an important factor in aircraft design.

At this stage we are not concerned with this post-buckling behaviour, but rather with

the prediction of the critical load which causes the initial bulging of the central area of

the plate. For the analysis we may conveniently employ the method of total potential

energy since we have already, in Chapter 7, derived expressions for strain and potential

energy corresponding to various load and support configurations. In these expressions

we assumed that the displacement of the plate comprises bending deflections only and

that these are small in comparison with the thickness of the plate. These restrictions

therefore apply in the subsequent theory.

First we consider the relatively simple case of the thin plate of Fig. 9.1, loaded as

shown, but simply supported along all four edges. We have seen in Chapter 7 that its

true deflected shape may be represented by the infinite double trigonometrical series

w =
∞
∑

m=1

∞
∑

n=1

Amn sin
mπx

a
sin

nπy

b

Also, the total potential energy of the plate is, from Eqs (7.37) and (7.45)

U + V =
1

2

∫ a

0

∫ b

0

[

D

{

(

∂2w

∂x2
+

∂2w

∂y2

)2

−2(1 − ν)

[

∂2w

∂x2

∂2w

∂y2
−

(

∂2w

∂x ∂y

)2
]}

− Nx

(

∂w

∂x

)2
]

dx dy (9.1)

The integration of Eq. (9.1) on substituting for w is similar to those integrations carried

out in Chapter 7. Thus, by comparison with Eq. (7.47)

U + V =
π4abD

8

∞
∑

m=1

∞
∑

n=1

A2
mn

(

m2

a2
+

n2

b2

)

−
π2b

8a
Nx

∞
∑

m=1

∞
∑

n=1

m2A2
mn (9.2)

The total potential energy of the plate has a stationary value in the neutral equilibrium

of its buckled state (i.e. Nx =Nx,CR). Therefore, differentiating Eq. (9.2) with respect

to each unknown coefficient Amnwe have

∂(U + V )

∂Amn

=
π4abD

4
Amn

(

m2

a2
+

n2

b2

)2

−
π2b

4a
Nx,CRm

2Amn = 0

and for a non-trivial solution

Nx,CR = π2a2D
1

m2

(

m2

a2
+

n2

b2

)2

(9.3)
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Exactly the same result may have been deduced from Eq. (ii) of Example 7.3, where

the displacement w would become infinite for a negative (compressive) value of Nx

equal to that of Eq. (9.3).

We observe from Eq. (9.3) that each term in the infinite series for displacement

corresponds, as in the case of a column, to a different value of critical load (note, the

problem is an eigenvalue problem). The lowest value of critical load evolves from some

critical combination of integers m and n, i.e. the number of half-waves in the x and y

directions, and the plate dimensions. Clearly n= 1 gives a minimum value so that no

matter what the values of m, a and b the plate buckles into a half sine wave in the y

direction. Thus we may write Eq. (9.3) as

Nx,CR = π2a2D
1

m2

(

m2

a2
+

1

b2

)2

or

Nx,CR =
kπ2D

b2
(9.4)

where the plate buckling coefficient k is given by the minimum value of

k =
(

mb

a
+

a

mb

)2

(9.5)

for a given value of a/b. To determine the minimum value of k for a given value of a/b

we plot k as a function of a/b for different values of m as shown by the dotted curves

in Fig. 9.2. The minimum value of k is obtained from the lower envelope of the curves

shown solid in the figure.

Fig. 9.2 Buckling coefficient k for simply supported plates.
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It can be seen that m varies with the ratio a/b and that k and the buckling load are a

minimumwhen k = 4 at values of a/b= 1, 2, 3, . . . .As a/b becomes large k approaches

4 so that long narrow plates tend to buckle into a series of squares.

The transition from one buckling mode to the next may be found by equating values

of k for the m and m+ 1 curves. Hence

mb

a
+

a

mb
=

(m + 1)b

a
+

a

(m + 1)b

giving

a

b
=

√

m(m + 1)

Substituting m= 1, we have a/b=
√
2= 1.414, and for m= 2, a/b=

√
6= 2.45 and

so on.

For a given value of a/b the critical stress, σCR =Nx,CR/t, is found from Eqs (9.4)

and (7.4), i.e.

σCR =
kπ2E

12(1 − ν2)

(

t

b

)2

(9.6)

In general, the critical stress for a uniform rectangular plate, with various edge supports

and loaded by constant or linearly varying in-plane direct forces (Nx,Ny) or constant

shear forces (Nxy) along its edges, is given by Eq. (9.6). The value of k remains a

function of a/b but depends also upon the type of loading and edge support. Solutions

for such problems have been obtained by solving the appropriate differential equation

or by using the approximate (Rayleigh–Ritz) energymethod.Values of k for a variety of

loading and support conditions are shown in Fig. 9.3. In Fig. 9.3(c), where k becomes

the shear buckling coefficient, b is always the smaller dimension of the plate.

We see fromFig. 9.3 that k is very nearly constant for a/b> 3. This fact is particularly

useful in aircraft structures where longitudinal stiffeners are used to divide the skin

into narrow panels (having small values of b), thereby increasing the buckling stress of

the skin.

9.2 Inelastic buckling of plates

For plates having small values of b/t the critical stress may exceed the elastic limit of

the material of the plate. In such a situation, Eq. (9.6) is no longer applicable since, as

we saw in the case of columns, E becomes dependent on stress as does Poisson’s ratio

ν. These effects are usually included in a plasticity correction factor η so that Eq. (9.6)

becomes

σCR =
ηkπ2E

12(1 − ν2)

(

t

b

)2

(9.7)

where E and ν are elastic values ofYoung’s modulus and Poisson’s ratio. In the linearly

elastic region η = 1, which means that Eq. (9.7) may be applied at all stress levels. The
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Fig. 9.3 (a) Buckling coefficients for flat plates in compression; (b) buckling coefficients for flat plates in bending; (c)
shear buckling coefficients for flat plates.



9.4 Local instability 299

derivation of a general expression for η is outside the scope of this book but one1 giving

good agreement with experiment is

η =
1 − ν2e

1 − ν2p

Es

E

[

1

2
+

1

2

(

1

4
+

3

4

Et

Es

)
1
2

]

where Et and Es are the tangent modulus and secant modulus (stress/strain) of the plate

in the inelastic region and νe and νp are Poisson’s ratio in the elastic and inelastic ranges.

9.3 Experimental determination of critical load
for a flat plate

In Section 8.3 we saw that the critical load for a column may be determined experi-

mentally, without actually causing the column to buckle, by means of the Southwell

plot. The critical load for an actual, rectangular, thin plate is found in a similar manner.

The displacement of an initially curved plate from the zero load position was found

in Section 7.5, to be

w1 =
∞
∑

m=1

∞
∑

n=1

Bmn sin
mπx

a
sin

nπy

b

where

Bmn =
AmnNx

π2D
a2

(

m + n2a2

mb2

)2
− Nx

We see that the coefficients Bmn increase with an increase of compressive load intensity

Nx. It follows that when Nx approaches the critical value, Nx,CR, the term in the series

corresponding to the buckled shape of the plate becomes the most significant. For a

square plate n= 1 and m= 1 give a minimum value of critical load so that at the centre

of the plate

w1 =
A11Nx

Nx,CR − Nx

or, rearranging

w1 = Nx,CR
w1

Nx

− A11

Thus, a graph of w1 plotted against w1/Nx will have a slope, in the region of the critical

load, equal to Nx,CR.

9.4 Local instability

We distinguished in the introductory remarks to Chapter 8 between primary and sec-

ondary (or local) instability. The latter form of buckling usually occurs in the flanges
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and webs of thin-walled columns having an effective slenderness ratio, le/r < 20. For

le/r > 80 this type of column is susceptible to primary instability. In the intermediate

range of le/r between 20 and 80, buckling occurs by a combination of both primary and

secondary modes.

Thin-walled columns are encountered in aircraft structures in the shape of longitudin-

al stiffeners, which are normally fabricated by extrusion processes or by forming from a

flat sheet. A variety of cross-sections are employed although each is usually composed

of flat plate elements arranged to form angle, channel, Z- or ‘top hat’ sections, as shown

in Fig. 9.4.We see that the plate elements fall into two distinct categories: flanges which

have a free unloaded edge and webs which are supported by the adjacent plate elements

on both unloaded edges.

In local instability the flanges and webs buckle like plates with a resulting change

in the cross-section of the column. The wavelength of the buckle is of the order of the

widths of the plate elements and the corresponding critical stress is generally independ-

ent of the length of the column when the length is equal to or greater than three times

the width of the largest plate element in the column cross-section.

Buckling occurs when the weakest plate element, usually a flange, reaches its critical

stress, although in some cases all the elements reach their critical stresses simultane-

ously. When this occurs the rotational restraint provided by adjacent elements to each

other disappears and the elements behave as though they are simply supported along

their common edges. These cases are the simplest to analyse and are found where the

cross-section of the column is an equal-legged angle, T-, cruciform or a square tube of

constant thickness. Values of local critical stress for columns possessing these types of

section may be found using Eq. (9.7) and an appropriate value of k. For example, k

for a cruciform section column is obtained from Fig. 9.3(a) for a plate which is simply

supported on three sides with one edge free and has a/b> 3. Hence k = 0.43 and if the

section buckles elastically then η = 1 and

σCR = 0.388E

(

t

b

)2

(ν = 0.3)

It must be appreciated that the calculation of local buckling stresses is generally

complicated with no particular method gaining universal acceptance, much of the infor-

mation available being experimental. A detailed investigation of the topic is therefore

beyond the scope of this book. Further information may be obtained from all the

references listed at the end of this chapter.

Fig. 9.4 (a) Extruded angle; (b) formed channel; (c) extruded Z; (d) formed ‘top hat’.
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9.5 Instability of stiffened panels

It is clear from Eq. (9.7) that plates having large values of b/t buckle at low values of

critical stress. An effective method of reducing this parameter is to introduce stiffeners

along the length of the plate thereby dividing a wide sheet into a number of smaller

and more stable plates. Alternatively, the sheet may be divided into a series of wide

short columns by stiffeners attached across its width. In the former type of structure

the longitudinal stiffeners carry part of the compressive load, while in the latter all the

load is supported by the plate. Frequently, both methods of stiffening are combined to

form a grid-stiffened structure.

Stiffeners in earlier types of stiffened panel possessed a relatively high degree of

strength compared with the thin skin resulting in the skin buckling at a much lower

stress level than the stiffeners. Such panels may be analysed by assuming that the

stiffeners provide simply supported edge conditions to a series of flat plates.

A more efficient structure is obtained by adjusting the stiffener sections so that

buckling occurs in both stiffeners and skin at about the same stress. This is achieved by

a construction involving closely spaced stiffeners of comparable thickness to the skin.

Since their critical stresses are nearly the same there is an appreciable interaction at

buckling between skin and stiffeners so that the complete panel must be considered as

a unit. However, caution must be exercised since it is possible for the two simultaneous

critical loads to interact and reduce the actual critical load of the structure2 (see Example

8.4). Various modes of buckling are possible, including primary buckling where the

wavelength is of the order of the panel length and local buckling with wavelengths of

the order of the width of the plate elements of the skin or stiffeners. A discussion of the

various buckling modes of panels having Z-section stiffeners has been given byArgyris

and Dunne.3

The prediction of critical stresses for panels with a large number of longitudinal

stiffeners is difficult and relies heavily on approximate (energy) and semi-empirical

methods. Bleich4 and Timoshenko (see Ref. 1, Chapter 8) give energy solutions for

plates with one and two longitudinal stiffeners and also consider plates having a large

number of stiffeners. Gerard and Becker5 have summarized much of the work on

stiffened plates and a large amount of theoretical and empirical data is presented by

Argyris and Dunne in the Handbook of Aeronautics.3

For detailed work on stiffened panels, reference should be made to as much as

possible of the abovework. The literature is, however, extensive so that herewepresent a

relatively simple approach suggested byGerard1. Figure 9.5 represents a panel of width

w stiffened by longitudinal members which may be flats (as shown), Z-, I-, channel or

Fig. 9.5 Stiffened panel.
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‘top hat’ sections. It is possible for the panel to behave as an Euler column, its cross-

section being that shown in Fig. 9.5. If the equivalent length of the panel acting as a

column is le then the Euler critical stress is

σCR,E =
π2E

(le/r)2

as in Eq. (8.8). In addition to the column buckling mode, individual plate elements

comprising the panel cross-section may buckle as long plates. The buckling stress is

then given by Eq. (9.7), i.e.

σCR =
ηkπ2E

12(1 − ν2)

(

t

b

)2

where the values of k, t and b depend upon the particular portion of the panel being

investigated. For example, the portion of skin between stiffeners may buckle as a plate

simply supported on all four sides. Thus, for a/b> 3, k = 4 from Fig. 9.3(a) and,

assuming that buckling takes place in the elastic range

σCR =
4π2E

12(1 − ν2)

(

tsk

bsk

)2

A further possibility is that the stiffeners may buckle as long plates simply supported

on three sides with one edge free. Thus

σCR =
0.43π2E

12(1 − ν2)

(

tst

bst

)2

Clearly, the minimum value of the above critical stresses is the critical stress for the

panel taken as a whole.

The compressive load is applied to the panel over its complete cross-section. To relate

this load to an applied compressive stress σA acting on each element of the cross-section

we divide the load per unit width, say Nx, by an equivalent skin thickness t̄, hence

σA =
Nx

t

where

t =
Ast

bsk
+ tsk

and Ast is the stiffener area.

The above remarks are concerned with the primary instability of stiffened panels.

Values of local buckling stress have been determined by Boughan, Baab and Gallaher

for idealized web, Z- and T- stiffened panels. The results are reproduced in Rivello6

together with the assumed geometries.

Further types of instability found in stiffened panels occur where the stiffeners are

riveted or spot welded to the skin. Such structures may be susceptible to interrivet
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buckling in which the skin buckles between rivets with a wavelength equal to the rivet

pitch, or wrinkling where the stiffener forms an elastic line support for the skin. In the

latter mode the wavelength of the buckle is greater than the rivet pitch and separation of

skin and stiffener does not occur. Methods of estimating the appropriate critical stresses

are given in Rivello6 and the Handbook of Aeronautics.3

9.6 Failure stress in plates and stiffened panels

The previous discussion on plates and stiffened panels investigated the prediction of

buckling stresses. However, as we have seen, plates retain some of their capacity to

carry load even though a portion of the plate has buckled. In fact, the ultimate load is

not reached until the stress in the majority of the plate exceeds the elastic limit. The

theoretical calculation of the ultimate stress is difficult since non-linearity results from

both large deflections and the inelastic stress–strain relationship.

Gerard1 proposes a semi-empirical solution for flat plates supported on all four

edges. After elastic buckling occurs theory and experiment indicate that the average

compressive stress, σ̄a, in the plate and the unloaded edge stress, σe, are related by the

following expression

σ̄a

σCR
= α1

(

σe

σCR

)n

(9.8)

where

σCR =
kπ2E

12(1 − ν2)

(

t

b

)2

and α1 is some unknown constant. Theoretical work by Stowell7 and Mayers and

Budiansky8 shows that failure occurs when the stress along the unloaded edge is

approximately equal to the compressive yield strength, σcy, of the material. Hence

substituting σcy for σe in Eq. (9.8) and rearranging gives

σ̄f

σcy
= α1

(

σCR

σcy

)1−n

(9.9)

where the average compressive stress in the plate has become the average stress at

failure σ̄f . Substituting for σCR in Eq. (9.9) and putting

α1π
2(1−n)

[12(1 − ν2)]1−n
= α

yields

σ̄f

σcy
= αk1−n

[

t

b

(

E

σcy

)
1
2

]2(1−n)

(9.10)
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or, in a simplified form

σ̄f

σcy
= β

[

t

b

(

E

σcy

)
1
2

]m

(9.11)

where β = αkm/2. The constants β and m are determined by the best fit of Eq. (9.11) to

test data.

Experiments on simply supported flat plates and square tubes of various aluminium

and magnesium alloys and steel show that β = 1.42 and m= 0.85 fit the results within

±10 per cent up to the yield strength. Corresponding values for long clamped flat plates

are β = 1.80, m= 0.85.

Gerard9–12 extended the above method to the prediction of local failure stresses for

the plate elements of thin-walled columns. Equation (9.11) becomes

σ̄f

σcy
= βg

[

(

gt2

A

) (

E

σcy

)
1
2

]m

(9.12)

where A is the cross-sectional area of the column, βg and m are empirical constants

and g is the number of cuts required to reduce the cross-section to a series of flanged

sections plus the number of flanges that would exist after the cuts are made. Examples

of the determination of g are shown in Fig. 9.6.

The local failure stress in longitudinally stiffened panels was determined by

Gerard10,12 using a slightly modified form of Eqs (9.11) and (9.12). Thus, for a section

of the panel consisting of a stiffener and a width of skin equal to the stiffener spacing

σ̄f

σcy
= βg

[

gtsktst

A

(

E

σ̄cy

)
1
2

]m

(9.13)

Fig. 9.6 Determination of empirical constant g.
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where tsk and tst are the skin and stiffener thicknesses, respectively. A weighted yield

stress σ̄cy is used for a panel in which thematerial of the skin and stiffener have different

yield stresses, thus

σ̄cy =
σcy + σcy,sk[(t/tst) − 1]

t/tst

where t̄ is the average or equivalent skin thickness previously defined. The parameter g

is obtained in a similar manner to that for a thin-walled column, except that the number

of cuts in the skin and the number of equivalent flanges of the skin are included. A cut

to the left of a stiffener is not counted since it is regarded as belonging to the stiffener

to the left of that cut. The calculation of g for two types of skin/stiffener combination

is illustrated in Fig. 9.7. Equation (9.13) is applicable to either monolithic or built up

panels when, in the latter case, interrivet buckling and wrinkling stresses are greater

than the local failure stress.

The values of failure stress given by Eqs (9.11), (9.12) and (9.13) are asso-

ciated with local or secondary instability modes. Consequently, they apply when

le/r ≤ 20. In the intermediate range between the local and primary modes, failure

occurs through a combination of both. At the moment there is no theory that predicts

satisfactorily failure in this range and we rely on test data and empirical methods.

The NACA (now NASA) have produced direct reading charts for the failure of ‘top

hat’, Z- and Y-section stiffened panels; a bibliography of the results is given by

Gerard.10

It must be remembered that research into methods of predicting the instabil-

ity and post-buckling strength of the thin-walled types of structure associated with

aircraft construction is a continuous process. Modern developments include the

use of the computer-based finite element technique (see Chapter 6) and the study

of the sensitivity of thin-walled structures to imperfections produced during fab-

rication; much useful information and an extensive bibliography is contained in

Murray.2

Fig. 9.7 Determination of g for two types of stiffener/skin combination.
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Fig. 9.8 Diagonal tension field beam.

9.7 Tension field beams

The spars of aircraft wings usually comprise an upper and a lower flange connected by

thin stiffened webs. These webs are often of such a thickness that they buckle under

shear stresses at a fraction of their ultimate load. The form of the buckle is shown in

Fig. 9.8(a), where the web of the beam buckles under the action of internal diagonal

compressive stresses produced by shear, leaving a wrinkled web capable of supporting

diagonal tension only in a direction perpendicular to that of the buckle; the beam is

then said to be a complete tension field beam.

9.7.1 Complete diagonal tension

The theory presented here is due to H. Wagner.13

The beam shown in Fig. 9.8(a) has concentrated flange areas having a depth d

between their centroids and vertical stiffeners which are spaced uniformly along the

length of the beam. It is assumed that the flanges resist the internal bending moment at

any section of the beam while the web, of thickness t, resists the vertical shear force.

The effect of this assumption is to produce a uniform shear stress distribution through

the depth of the web (see Section 20.3) at any section. Therefore, at a section of the

beam where the shear force is S, the shear stress τ is given by

τ =
S

td
(9.14)

Consider now an element ABCD of the web in a panel of the beam, as shown in Fig.

9.8(a). The element is subjected to tensile stresses, σt, produced by the diagonal tension

on the planes AB and CD; the angle of the diagonal tension is α. On a vertical plane

FD in the element the shear stress is τ and the direct stress σz. Now considering the

equilibrium of the element FCD (Fig. 9.8(b)) and resolving forces vertically, we have

(see Section 1.6)

σtCDt sin α = τFDt
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Fig. 9.9 Determination of flange forces.

which gives

σt =
τ

sin α cosα
=

2τ

sin 2α
(9.15)

or, substituting for τ from Eq. (9.14) and noting that in this case S=W at all sections

of the beam

σt =
2W

td sin 2α
(9.16)

Further, resolving forces horizontally for the element FCD

σzFDt = σtCDt cosα

which gives

σz = σt cos
2 α

or, substituting for σt from Eq. (9.15)

σz =
τ

tan α
(9.17)

or, for this particular beam, from Eq. (9.14)

σz =
W

td tan α
(9.18)

Since τ and σt are constant through the depth of the beam it follows that σz is constant

through the depth of the beam.

The direct loads in the flanges are found by considering a length z of the beam as

shown in Fig. 9.9. On the planemm there are direct and shear stresses σz and τ acting in

theweb, together with direct loadsFT andFB in the top and bottomflanges respectively.

FT and FB are produced by a combination of the bending moment Wz at the section

plus the compressive action (σz) of the diagonal tension. Taking moments about the

bottom flange

Wz = FTd −
σztd

2

2
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Hence, substituting for σz from Eq. (9.18) and rearranging

FT =
Wz

d
+

W

2 tan α
(9.19)

Now resolving forces horizontally

FB − FT + σztd = 0

which gives, on substituting for σz and FT from Eqs (9.18) and (9.19)

FB =
Wz

d
−

W

2 tan α
(9.20)

The diagonal tension stress σt induces a direct stress σy on horizontal planes at any

point in the web. Then, on a horizontal plane HC in the elementABCD of Fig. 9.8 there

is a direct stress σy and a complementary shear stress τ, as shown in Fig. 9.10.

From a consideration of the vertical equilibrium of the element HDC we have

σyHCt = σtCDt sin α

which gives

σy = σt sin
2 α

Substituting for σt from Eq. (9.15)

σy = τ tan α (9.21)

or, from Eq. (9.14) in which S=W

σy =
W

td
tan α (9.22)

The tensile stresses σy on horizontal planes in the web of the beam cause compression

in the vertical stiffeners. Each stiffener may be assumed to support half of each adjacent

panel in the beam so that the compressive load P in a stiffener is given by

P = σytb

Fig. 9.10 Stress system on a horizontal plane in the beam web.
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which becomes, from Eq. (9.22)

P =
Wb

d
tan α (9.23)

If the loadP is sufficiently high the stiffeners will buckle. Tests indicate that they buckle

as columns of equivalent length

or
le = d/

√
4 − 2b/d for b < 1.5d

le = d for b > 1.5d

}

(9.24)

In addition to causing compression in the stiffeners the direct stressσy produces bending

of the beam flanges between the stiffeners as shown in Fig. 9.11. Each flange acts as a

continuous beam carrying a uniformly distributed load of intensity σyt. The maximum

bending moment in a continuous beam with ends fixed against rotation occurs at a

support and is wL2/12 in which w is the load intensity and L the beam span. In this

case, therefore, themaximumbendingmomentMmax occurs at a stiffener and is givenby

Mmax =
σytb

2

12

or, substituting for σy from Eq. (9.22)

Mmax =
Wb2 tan α

12d
(9.25)

Midway between the stiffeners this bending moment reduces toWb2 tan α/24d.

The angle α adjusts itself such that the total strain energy of the beam is a minimum.

If it is assumed that the flanges and stiffeners are rigid then the strain energy comprises

the shear strain energy of the web only and α = 45◦. In practice, both flanges and

stiffeners deform so that α is somewhat less than 45◦, usually of the order of 40◦ and, in
the type of beam common to aircraft structures, rarely below 38◦. For beams having all

components made of the same material the condition of minimum strain energy leads

to various equivalent expressions for α, one of which is

tan2 α =
σt + σF

σt + σS
(9.26)

Fig. 9.11 Bending of flanges due to web stress.
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in which σF and σS are the uniform direct compressive stresses induced by the diagonal

tension in the flanges and stiffeners, respectively. Thus, from the second term on the

right-hand side of either of Eqs (9.19) or (9.20)

σF =
W

2AF tan α
(9.27)

in which AF is the cross-sectional area of each flange. Also, from Eq. (9.23)

σS =
Wb

ASd
tan α (9.28)

where AS is the cross-sectional area of a stiffener. Substitution of σt from Eq. (9.16) and

σF and σS from Eqs (9.27) and (9.28) into Eq. (9.26), produces an equation which may

be solved for α. An alternative expression for α, again derived from a consideration of

the total strain energy of the beam, is

tan4 α =
1 + td/2AF

1 + tb/AS
(9.29)

Example 9.1
The beam shown in Fig. 9.12 is assumed to have a complete tension field web. If

the cross-sectional areas of the flanges and stiffeners are, respectively, 350mm2 and

300mm2 and the elastic section modulus of each flange is 750mm3, determine the

maximum stress in a flange and also whether or not the stiffeners will buckle. The

thickness of the web is 2mm and the second moment of area of a stiffener about an

axis in the plane of the web is 2000mm4; E = 70 000N/mm2.

From Eq. (9.29)

tan4 α =
1 + 2 × 400/(2 × 350)

1 + 2 × 300/300
= 0.7143

Fig. 9.12 Beam of Example 9.1.
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so that

α = 42.6◦

The maximum flange stress will occur in the top flange at the built-in end where the

bending moment on the beam is greatest and the stresses due to bending and diagonal

tension are additive. Therefore, from Eq. (9.19)

FT =
5 × 1200

400
+

5

2 tan 42.6◦

i.e.

FT = 17.7 kN

Hence the direct stress in the top flange produced by the externally applied bending

moment and the diagonal tension is 17.7× 103/350= 50.7N/mm2. In addition to this

uniform compressive stress, local bending of the type shown in Fig. 9.11 occurs. The

local bending moment in the top flange at the built-in end is found using Eq. (9.25), i.e.

Mmax =
5 × 103 × 3002 tan 42.6◦

12 × 400
= 8.6 × 104Nmm

The maximum compressive stress corresponding to this bending moment occurs at the

lower extremity of the flange and is 8.6× 104/750= 114.9N/mm2. Thus the maximum

stress in a flange occurs on the inside of the top flange at the built-in end of the beam,

is compressive and equal to 114.9+ 50.7= 165.6N/mm2.

The compressive load in a stiffener is obtained using Eq. (9.23), i.e.

P =
5 × 300 tan 42.6◦

400
= 3.4 kN

Since, in this case, b< 1.5d, the equivalent length of a stiffener as a column is given

by the first of Eqs (9.24), i.e.

le = 400/
√

4 − 2 × 300/400 = 253mm

From Eq. (8.7) the buckling load of a stiffener is then

PCR =
π2 × 70 000 × 2000

2532
= 22.0 kN

Clearly the stiffener will not buckle.

In Eqs (9.28) and (9.29) it is implicitly assumed that a stiffener is fully effective in

resisting axial load. This will be the case if the centroid of area of the stiffener lies in

the plane of the beam web. Such a situation arises when the stiffener consists of two

members symmetrically arranged on opposite sides of the web. In the case where the

web is stiffened by a single member attached to one side, the compressive load P is

offset from the stiffener axis thereby producing bending in addition to axial load. For
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a stiffener having its centroid a distance e from the centre of the web the combined

bending and axial compressive stress, σc, at a distance e from the stiffener centroid is

σc =
P

AS
+

Pe2

ASr2

in which r is the radius of gyration of the stiffener cross-section about its neutral axis

(note: second moment of area I = Ar2). Then

σc =
P

AS

[

1 +
(e

r

)2
]

or

σc =
P

ASe

where

ASe =
AS

1 + (e/r)2
(9.30)

and is termed the effective stiffener area.

9.7.2 Incomplete diagonal tension

In modern aircraft structures, beams having extremely thin webs are rare. They retain,

after buckling, some of their ability to support loads so that even near failure they are in

a state of stress somewhere between that of pure diagonal tension and the pre-buckling

stress. Such a beam is described as an incomplete diagonal tension field beam and may

be analysed by semi-empirical theory as follows.

It is assumed that the nominal web shear τ (=S/td) may be divided into a ‘true shear’

component τS and a diagonal tension component τDT by writing

τDT = kτ, τS = (1 − k)τ (9.31)

where k, the diagonal tension factor, is a measure of the degree to which the diagonal

tension is developed. A completely unbuckled web has k = 0 whereas k = 1 for a web

in complete diagonal tension. The value of k corresponding to a web having a critical

shear stress τCR is given by the empirical expression

k = tanh

(

0.5 log
τ

τCR

)

(9.32)

The ratio τ/τCR is known as the loading ratio or buckling stress ratio. The buckling

stress τCR may be calculated from the formula

τCR,elastic = kssE

(

t

b

)2
[

Rd +
1

2
(Rb − Rd)

(

b

d

)3
]

(9.33)
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where kss is the coefficient for a plate with simply supported edges and Rd and Rb are

empirical restraint coefficients for the vertical and horizontal edges of the web panel

respectively. Graphs giving kss,Rd and Rb are reproduced in Kuhn.13

The stress equations (9.27) and (9.28) are modified in the light of these assumptions

and may be rewritten in terms of the applied shear stress τ as

σF =
kτ cot α

(2AF/td) + 0.5(1 − k)
(9.34)

σS =
kτ tan α

(AS/tb) + 0.5(1 − k)
(9.35)

Further, the web stress σt given by Eq. (9.15) becomes two direct stresses: σ1 along the

direction of α given by

σ1 =
2kτ

sin 2α
+ τ(1 − k) sin 2α (9.36)

and σ2 perpendicular to this direction given by

σ2 = −τ(1 − k) sin 2α (9.37)

The secondary bending moment of Eq. (9.25) is multiplied by the factor k, while the

effective lengths for the calculation of stiffener buckling loads become (see Eqs (9.24))

or
le = ds/

√

1 + k2(3 − 2b/ds) for b < 1.5d

le = ds for b > 1.5d

where ds is the actual stiffener depth, as opposed to the effective depth d of the web,

taken between the web/flange connections as shown in Fig. 9.13. We observe that Eqs

(9.34)–(9.37) are applicable to either incomplete or complete diagonal tension field

beams since, for the latter case, k = 1 giving the results of Eqs (9.27), (9.28) and (9.15).

In some cases beams taper along their lengths, in which case the flange loads are no

longer horizontal but have vertical components which reduce the shear load carried by

the web. Thus, in Fig. 9.14 where d is the depth of the beam at the section considered,

we have, resolving forces vertically

W − (FT + FB) sin β − σt(d cosα) sin α = 0 (9.38)

Fig. 9.13 Calculation of stiffener buckling load.
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Fig. 9.14 Effect of taper on diagonal tension field beam calculations.

For horizontal equilibrium

(FT − FB) cosβ − σttd cos
2 α = 0 (9.39)

Taking moments about B

Wz − FTd cosβ + 1
2
σttd

2 cos2 α = 0 (9.40)

Solving Eqs (9.38), (9.39) and (9.40) for σt, FT and FB

σt =
2W

td sin 2α

(

1 −
2z

d
tan β

)

(9.41)

FT =
W

d cosβ

[

z +
d cot α

2

(

1 −
2z

d
tan β

)]

(9.42)

FB =
W

d cosβ

[

z −
d cot α

2

(

1 −
2z

d
tan β

)]

(9.43)

Equation (9.23) becomes

P =
Wb

d
tan α

(

1 −
2z

d
tan β

)

(9.44)

Also the shear force S at any section of the beam is, from Fig. 9.14

S = W − (FT + FB) sin β

or, substituting for FT and FB from Eqs (9.42) and (9.43)

S = W

(

1 −
2z

d
tan β

)

(9.45)
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Fig. 9.15 Collapse mechanism of a panel of a tension field beam.

9.7.3 Post buckling behaviour

Sections 9.7.1 and 9.7.2 are concerned with beams in which the thin webs buckle to

form tension fields; the beam flanges are then regarded as being subjected to bending

action as in Fig. 9.11. It is possible, if the beam flanges are relatively light, for failure

due to yielding to occur in the beam flanges after the web has buckled so that plastic

hinges form and a failure mechanism of the type shown in Fig. 9.15 exists. This post

buckling behaviour was investigated by Evans, Porter and Rockey15 who developed a

design method for beams subjected to bending and shear. It is their method of analysis

which is presented here.

Suppose that the panel AXBZ in Fig. 9.15 has collapsed due to a shear load S and a

bending moment M; plastic hinges have formed at W, X,Y and Z. In the initial stages

of loading the web remains perfectly flat until it reaches its critical stresses i.e., τcr in

shear and σcrb in bending. The values of these stresses may be found approximately

from

(

σmb

σcrb

)2

+
(

τm

τcr

)2

= 1 (9.46)

where σcrb is the critical value of bending stress with S= 0,M �= 0 and τcr is the critical

value of shear stress when S �= 0 and M = 0. Once the critical stress is reached the

web starts to buckle and cannot carry any increase in compressive stress so that, as

we have seen in Section 9.7.1, any additional load is carried by tension field action.

It is assumed that the shear and bending stresses remain at their critical values τm
and σmb and that there are additional stresses σt which are inclined at an angle θ to

the horizontal and which carry any increases in the applied load. At collapse, i.e. at

ultimate load conditions, the additional stress σt reaches its maximum value σt(max) and

the panel is in the collapsed state shown in Fig. 9.15.
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Consider now the small rectangular element on the edge AW of the panel before

collapse. The stresses acting on the element are shown in Fig. 9.16(a). The stresses

on planes parallel to and perpendicular to the direction of the buckle may be found

by considering the equilibrium of triangular elements within this rectangular element.

Initially we shall consider the triangular element CDE which is subjected to the stress

system shown in Fig. 9.16(b) and is in equilibrium under the action of the forces

corresponding to these stresses. Note that the edge CE of the element is parallel to the

direction of the buckle in the web.

For equilibrium of the element in a direction perpendicular to CE (see Section 1.6)

σξCE + σmbED cos θ − τmED sin θ − τmDCcos θ = 0

Dividing through by CE and rearranging we have

σξ = −σmb cos
2 θ + τm sin 2θ (9.47)

Similarly, by considering the equilibrium of the element in the direction EC we have

τηξ = −
σmb

2
sin 2θ − τm cos 2θ (9.48)

Further the direct stress ση on the plane FD (Fig. 9.16(c)) which is perpendicular to the

plane of the buckle is found from the equilibrium of the element FED. Then,

σηFD + σmbED sin θ + τmEF sin θ + τmDE cos θ = 0

Dividing through by FD and rearranging gives

ση = −σmb sin
2 θ − τm sin 2θ (9.49)

Note that the shear stress on this plane forms a complementary shear stress system

with τηξ.

The failure condition is reached by adding σt(max) to σξ and using the von Mises

theory of elastic failure (see Ref. [14]) i.e.

σ2
y = σ2

1 + σ2
2 − σ1σ2 + 3τ2 (9.50)

where σy is the yield stress of the material, σ1 and σ2 are the direct stresses acting on

two mutually perpendicular planes and τ is the shear stress acting on the same two

planes. Hence, when the yield stress in the web is σyw failure occurs when

σ2
yw = (σξ + σt(max))

2 + σ2
η − ση(σξ + σt(max)) + 3τ2ηξ (9.51)

D

E
E

D D

E F
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θ θ
θ
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(a) (b) (c)

σmb σmb σmb
σmb

σξ

ση

τm

τm

τm

τm

τm

τm

τm

τm

τηξ

τηξ

Fig. 9.16 Determination of stresses on planes parallel and perpendicular to the plane of the buckle.
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Eqs (9.47), (9.48), (9.49) and (9.51) may be solved for σt(max) which is then given by

σt(max) = −
1

2
A +

1

2
[A2 − 4(σ2

mb + 3τ2m − σ2
yw)]

1
2 (9.52)

where

A = 3τm sin 2θ + σmb sin
2 θ − 2σmb cos

2 θ (9.53)

These equations have been derived for a point on the edge of the panel but are applicable

to any point within its boundary. Therefore the resultant force Fw corresponding to the

tension field in the web may be calculated and its line of action determined.

If the average stresses in the compression and tension flanges are σcf and σtf and the

yield stress of the flanges is σyf the reduced plastic moments in the flanges are (see

Ref. [14])

M ′
pc = Mpc

[

1 −
(

σcf

σyf

)2
]

(compression flange) (9.54)

M ′
pt = Mpt

[

1 −
(

σtf

σyf

)]

(tension flange) (9.55)

The position of each plastic hinge may be found by considering the equilibrium of a

length of flange and employing the principle of virtual work. In Fig. 9.17 the length

WX of the upper flange of the beam is given a virtual displacement φ. The work done

by the shear force at X is equal to the energy absorbed by the plastic hinges at X andW

and the work done against the tension field stress σt(max). Suppose the average value

of the tension field stress is σtc, i.e. the stress at the midpoint of WX.

Then

Sxccφ = 2M ′
pcφ + σtc tw sin2 θ

c2c

2
φ

The minimum value of Sx is obtained by differentiating with respect to cc, i.e.

dSx

dcc
= −2

M ′
pc

c2c
+ σtc tw

sin2 θ

2
= 0

Fc

cc

Fc

M �pc M�pc

Sx

W X

θ

φ

σtc

Fig. 9.17 Determination of plastic hinge position.
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cc/2

θ

τm

Fc

σtc

σcf

Fig. 9.18 Determination of flange stress.

which gives

c2c =
4M ′

pc

σtc tw sin2 θ
(9.56)

Similarly in the tension flange

c2t =
4M ′

pt

σtt tw sin2 θ
(9.57)

Clearly for the plastic hinges to occur within a flange both cc and ct must be less than

b. Therefore from Eq. (9.56)

M ′
pc <

twb
2 sin2 θ

4
σtc (9.58)

where σtc is found from Eqs (9.52) and (9.53) at the midpoint of WX.

The average axial stress in the compression flange between W and X is obtained by

considering the equilibrium of half of the length of WX (Fig. 9.18).

Then

Fc = σcfAcf + σtctw
cc

2
sin θ cos θ + τmtw

cc

2

from which

σcf =
Fc − 1

2
(σtc sin θ cos θ + τm)twcc

Acf
(9.59)

where Fc is the force in the compression flange atW and Acf is the cross-sectional area

of the compression flange.

Similarly for the tension flange

σtf =
Ft + 1

2
(σtt sin θ cos θ + τm)twct

Atf
(9.60)

The forces Fc and Ft are found by considering the equilibrium of the beam to the right

of WY (Fig. 9.19). Then, resolving vertically and noting that Scr =τmtwd

Sult = Fw sin θ + τmtwd +
∑

Wn (9.61)

Resolving horizontally and noting that Hcr = τmtw (b− cc − ct)

Fc − Ft = Fw cos θ − τmtw(b − cc − ct) (9.62)
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Fig. 9.19 Determination of flange forces.

Taking moments about O we have

Fc + Ft =
2

d

[

Sult

(

s +
b + cc − ct

2

)

+ M ′
pt − M ′

pc + Fwq − Mw −
∑

n

Wnzn

]

(9.63)

where W1 to Wn are external loads applied to the beam to the right of WY and Mw is

the bending moment in the web when it has buckled and become a tension field, i.e.

Mw =
σmbbd

2

b

The flange forces are then

Fc =
Sult

2d
(d cot θ + 2s + b + cc − ct) +

1

d

(

M ′
pt − M ′

pc + Fwq − Mw −
∑

n

Wnzn

)

−
1

2
τmtw(d cot θ + b − cc − ct) (9.64)

Ft =
Sult

2d
(d cot θ + 2s + b + cc − ct) +

1

d

(

M ′
pt − M ′

pc − Fwq − Mw −
∑

n

Wnzn

)

+
1

2
τmtw(d cot θ + b − cc − ct) (9.65)
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Evans, Porter and Rockey adopted an iterative procedure for solving Eqs (9.61)–(9.65)

in which an initial value of θ was assumed and σcf and σtf were taken to be zero. Then

cc and ct were calculated and approximate values of Fc and Ft found giving better

estimates for σcf and σtf . The procedure was then repeated until the required accuracy

was obtained.
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Problems

P.9.1 A thin square plate of side a and thickness t is simply supported along each

edge, and has a slight initial curvature giving an initial deflected shape.

w0 = δ sin
πx

a
sin

πy

a

If the plate is subjected to a uniform compressive stress σ in the x-direction (see

Fig. P.9.1), find an expression for the elastic deflection w normal to the plate. Show

also that the deflection at the mid-point of the plate can be presented in the form of a

Southwell plot and illustrate your answer with a suitable sketch.
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Ans. w= [σtδ/(4π2D/a2 − σt)] sin πx
a
sin

πy
a

Fig. P.9.1

P.9.2 A uniform flat plate of thickness t has a width b in the y direction and length l

in the x direction (see Fig. P.9.2). The edges parallel to the x axis are clamped and those

parallel to the y axis are simply supported. A uniform compressive stress σ is applied

in the x direction along the edges parallel to the y axis. Using an energy method, find

an approximate expression for the magnitude of the stress σ which causes the plate to

buckle, assuming that the deflected shape of the plate is given by

w = a11 sin
mπx

l
sin2

πy

b

For the particular case l= 2b, find the number of half waves m corresponding to the

lowest critical stress, expressing the result to the nearest integer. Determine also the

lowest critical stress.

Ans. m= 3, σCR = [6E/(1–v2)](t/b)2

Fig. P.9.2
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P.9.3 Apanel, comprising flat sheet and uniformly spacedZ-section stringers, a part

of whose cross-section is shown in Fig. P.9.3, is to be investigated for strength under

uniform compressive loads in a structure in which it is to be stabilized by frames a

distance l apart, l being appreciably greater than the spacing b.

(a) State the modes of failure which you would consider and how you would

determine appropriate limiting stresses.

(b) Describe a suitable test to verify your calculations, giving particulars of the speci-

men, the manner of support and the measurements you would take. The latter should

enable you to verify the assumptions made, as well as to obtain the load supported.

Fig. P.9.3

P.9.4 Part of a compression panel of internal construction is shown in Fig. P.9.4.

The equivalent pin-centre length of the panel is 500mm. The material has a Young’s

modulus of 70 000N/mm2 and its elasticity may be taken as falling catastrophically

when a compressive stress of 300N/mm2 is reached. Taking coefficients of 3.62 for

buckling of a plate with simply supported sides and of 0.385 with one side simply

supported and one free, determine (a) the load per mm width of panel when initial

buckling may be expected and (b) the load per mm for ultimate failure. Treat the

material as thin for calculating section constants and assume that after initial buckling

the stress in the plate increases parabolically from its critical value in the centre of

sections.

Ans. 613.8N/mm, 844.7N/mm.

Fig. P.9.4

P.9.5 A simply supported beam has a span of 2.4m and carries a central con-

centrated load of 10 kN. The flanges of the beam each have a cross-sectional area of



Problems 323

300mm2 while that of the vertical web stiffeners is 280mm2. If the depth of the

beam, measured between the centroids of area of the flanges, is 350mm and the

stiffeners are symmetrically arranged about the web and spaced at 300mm inter-

vals, determine the maximum axial load in a flange and the compressive load in a

stiffener.

It may be assumed that the beam web, of thickness 1.5mm, is capable of resisting

diagonal tension only.

Ans. 19.9 kN, 3.9 kN.

P.9.6 The spar of an aircraft is to be designed as an incomplete diagonal tension

beam, the flanges being parallel. The stiffener spacing will be 250mm, the effective

depth of web will be 750mm, and the depth between web-to-flange attachments is

725mm.

The spar is to carry an ultimate shear force of 100 000N. The maximum permissible

shear stress is 165N/mm2, but it is also required that the shear stress should not exceed

15 times the critical shear stress for the web panel.

Assuming α to be 40◦ and using the relationships below:

(i) Select the smallest suitable web thickness from the following range of standard

thicknesses. (TakeYoung’s Modulus E as 70 000N/mm2.)

0.7mm, 0.9mm, 1.2mm, 1.6mm

(ii) Calculate the stiffener end load and the secondary bending moment in the flanges

(assume stiffeners to be symmetrical about the web).

The shear stress buckling coefficient for the web may be calculated from the

expression

K = 7.70[1 + 0.75(b/d)2]

b and d having their usual significance.

The relationship between the diagonal tension factor and buckling stress ratio is

τ/τCR 5 7 9 11 13 15

k 0.37 0.40 0.42 0.48 0.51 0.53

Note that α is the angle of diagonal tension measured from the spanwise axis of the

beam, as in the usual notation.

Ans. 1.2mm, 130AS/(1+ 0.0113AS), 238 910Nmm.

P. 9.7 The main compressive wing structure of an aircraft consists of stringers,

having the section shown in Fig. P.9.7(b), bonded to a thin skin (Fig. P.9.7(a)). Find

suitable values for the stringer spacing b and rib spacing L if local instability, skin buck-

ling and panel strut instability all occur at the same stress. Note that in Fig. P.9.7(a) only

two of several stringers are shown for diagrammatic clarity. Also the thin skin should
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be treated as a flat plate since the curvature is small. For a flat plate simply supported

along two edges assume a buckling coefficient of 3.62. Take E = 69 000N/mm2.

Ans. b= 56.5mm, L= 700mm.

9.5 mm

19.0 mm

0.9 mm

31.8 mm

1.6 mm

Wing r, b

L

9.5 mm

b

(a)

(b)

Fig. P.9.7
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Bending of open and closed,
thin-walled beams

In Chapter 12 we discussed the various types of structural component found in aircraft

construction and the various loads they support. We saw that an aircraft is basically an

assemblyof stiffened shell structures ranging from the single cell closed section fuselage

to multicellular wings and tail surfaces each subjected to bending, shear, torsional and

axial loads. Other, smaller portions of the structure consist of thin-walled channel,

T-, Z-, ‘top-hat’-or I-sections, which are used to stiffen the thin skins of the cellular

components and provide support for internal loads from floors, engine mountings, etc.

Structural members such as these are known as open section beams, while the cellular

components are termed closed section beams; clearly, both types of beam are subjected

to axial, bending, shear and torsional loads.

In this chapter we shall investigate the stresses and displacements in thin-walled open

and single cell closed section beams produced by bending loads.

In Chapter 1 we saw that an axial load applied to a member produces a uniform

direct stress across the cross-section of themember.A different situation ariseswhen the

applied loads cause a beam to bendwhich, if the loads are vertical, will take up a sagging

‘(⌣)’ or hogging shape ‘(⌢)’. This means that for loads which cause a beam to sag the

upper surface of the beam must be shorter than the lower surface as the upper surface

becomes concave and the lower one convex; the reverse is true for loads which cause

hogging. The strains in the upper regions of the beamwill, therefore, be different to those

in the lower regions and since we have established that stress is directly proportional

to strain (Eq. (1.40)) it follows that the stress will vary through the depth of the beam.

The truth of this can be demonstrated by a simple experiment. Take a reasonably

long rectangular rubber eraser and draw three or four lines on its longer faces as shown

in Fig. 16.1(a); the reason for this will become clear a little later. Now hold the eraser

between the thumb and forefinger at each end and apply pressure as shown by the

direction of the arrows in Fig. 16.1(b). The eraser bends into the shape shown and the

lines on the side of the eraser remain straight but are now further apart at the top than

at the bottom.

Since, in Fig. 16.1(b), the upper fibres have been stretched and the lower fibres

compressed there will be fibres somewhere in between which are neither stretched nor

compressed; the plane containing these fibres is called the neutral plane.
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Convex

Concave

(a) (b)

Fig. 16.1 Bending of a rubber eraser.

Now rotate the eraser so that its shorter sides are vertical and apply the same pressure

with your fingers. The eraser again bends but now requires much less effort. It follows

that the geometry and orientation of a beam sectionmust affect itsbending stiffness. This

is more readily demonstrated with a plastic ruler. When flat it requires hardly any effort

to bend it but when held with its width vertical it becomes almost impossible to bend.

16.1 Symmetrical bending

Although symmetrical bending is a special case of the bending of beams of arbitrary

cross-section, we shall investigate the former first, so that the more complex general

case may be more easily understood.

Symmetrical bending arises in beamswhich have either singly or doubly symmetrical

cross-sections; examples of both types are shown in Fig. 16.2.

Suppose that a length of beam, of rectangular cross-section, say, is subjected to a

pure, sagging bending moment,M, applied in a vertical plane.We shall define this later

as a negative bending moment. The length of beam will bend into the shape shown in

Fig. 16.3(a) in which the upper surface is concave and the lower convex. It can be seen

that the upper longitudinal fibres of the beam are compressed while the lower fibres are

stretched. It follows that, as in the case of the eraser, between these two extremes there

are fibres that remain unchanged in length.

Axis of symmetry

Double
(rectangular)

Double
(I-section)

Single
(channel section)

Single
(T-section)

Fig. 16.2 Symmetrical section beams.
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M M

Neutral
axis

(a) (b)

Neutral plane

Fig. 16.3 Beam subjected to a pure sagging bending moment.

The direct stress therefore varies through the depth of the beam from compression in

the upper fibres to tension in the lower. Clearly the direct stress is zero for the fibres that

do not change in length; we have called the plane containing these fibres the neutral

plane. The line of intersection of the neutral plane and any cross-section of the beam

is termed the neutral axis (Fig. 16.3(b)).

The problem, therefore, is to determine the variation of direct stress through the

depth of the beam, the values of the stresses and subsequently to find the corresponding

beam deflection.

16.1.1 Assumptions

The primary assumption made in determining the direct stress distribution produced by

pure bending is that plane cross-sections of the beam remain plane and normal to the

longitudinal fibres of the beam after bending. Again, we saw this from the lines on the

side of the eraser. We shall also assume that the material of the beam is linearly elastic,

i.e. it obeys Hooke’s law, and that the material of the beam is homogeneous.

16.1.2 Direct stress distribution

Consider a length of beam (Fig. 16.4(a)) that is subjected to a pure, sagging bending

moment, M, applied in a vertical plane; the beam cross-section has a vertical axis of

symmetry as shown in Fig. 16.4(b). The bending moment will cause the length of beam

y

y1

y2

y
z

O

�A

Neutral
axis

(b)

M
M

M

y

y

S

I

N

J

O

K

T

G

Q

�z

x

P

(a)

Fig. 16.4 Bending of a symmetrical section beam.
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Fig. 16.5 Length of beam subjected to a pure bending moment.

to bend in a similar manner to that shown in Fig. 16.3(a) so that a neutral plane will

exist which is, as yet, unknown distances y1 and y2 from the top and bottom of the

beam, respectively. Coordinates of all points in the beam are referred to axes Oxyz in

which the origin O lies in the neutral plane of the beam. We shall now investigate the

behaviour of an elemental length, δz, of the beam formed by parallel sections MIN and

PGQ (Fig. 16.4(a)) and also the fibre ST of cross-sectional area δA a distance y above

the neutral plane. Clearly, before bending takes place MP= IG=ST=NQ= δz.

The bendingmomentM causes the length of beam to bend about a centre of curvature

C as shown in Fig. 16.5(a). Since the element is small in length and a pure moment

is applied we can take the curved shape of the beam to be circular with a radius of

curvature Rmeasured to the neutral plane. This is a useful reference point since, as we

have seen, strains and stresses are zero in the neutral plane.

The previously parallel plane sectionsMINandPGQremain plane aswehave demon-

strated but are now inclined at an angle δθ to each other. The length MP is now shorter

than δz as is ST while NQ is longer; IG, being in the neutral plane, is still of length δz.

Since the fibre ST has changed in length it has suffered a strain εz which is given by

εz =
change in length

original length

Then

εz =
(R − y)δθ − δz

δz

i.e.

εz =
(R − y)δθ − Rδθ

Rδθ

so that

εz = −
y

R
(16.1)
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The negative sign in Eq. (16.1) indicates that fibres in the region where y is positive

will shorten when the bending moment is negative. Then, from Eq. (1.40), the direct

stress σz in the fibre ST is given by

σz = −E
y

R
(16.2)

The direct or normal force on the cross-section of the fibre ST is σzδA. However, since

the direct stress in the beam section is due to a pure bending moment, in other words

there is no axial load, the resultant normal force on the complete cross-section of the

beam must be zero. Then
∫

A

σz dA = 0 (16.3)

where A is the area of the beam cross-section.

Substituting for σz in Eq. (16.3) from (16.2) gives

−
E

R

∫

A

y dA = 0 (16.4)

in which both E and R are constants for a beam of a given material subjected to a given

bending moment. Therefore
∫

A

y dA = 0 (16.5)

Equation (16.5) states that the first moment of the area of the cross-section of the beam

with respect to the neutral axis, i.e. the x axis, is equal to zero. Thus we see that the

neutral axis passes through the centroid of area of the cross-section. Since the y axis

in this case is also an axis of symmetry, it must also pass through the centroid of the

cross-section. Hence the origin, O, of the coordinate axes, coincides with the centroid

of area of the cross-section.

Equation (16.2) shows that for a sagging (i.e. negative) bending moment the direct

stress in the beam section is negative (i.e. compressive) when y is positive and positive

(i.e. tensile) when y is negative.

Consider now the elemental strip δA in Fig. 16.4(b); this is, in fact, the cross-section

of the fibre ST. The strip is above the neutral axis so that there will be a compressive

force acting on its cross-section of σzδA which is numerically equal to (Ey/R)δA from

Eq. (16.2). Note that this force will act at all sections along the length of ST. At S this

force will exert a clockwise moment (Ey/R)yδA about the neutral axis while at T the

force will exert an identical anticlockwise moment about the neutral axis. Considering

either end of ST we see that the moment resultant about the neutral axis of the stresses

on all such fibres must be equivalent to the applied negative moment M, i.e.

M = −

∫

A

E
y2

R
dA

or

M = −
E

R

∫

A

y2dA (16.6)
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The term
∫

A
y2 dA is known as the second moment of area of the cross-section of the

beam about the neutral axis and is given the symbol I . Rewriting Eq. (16.6) we have

M = −
EI

R
(16.7)

or, combining this expression with Eq. (16.2)

M

I
= −

E

R
=

σz

y
(16.8)

From Eq. (16.8) we see that

σz =
My

I
(16.9)

The direct stress, σz, at any point in the cross-section of a beam is therefore directly

proportional to the distance of the point from the neutral axis and so varies linearly

through the depth of the beam as shown, for the section JK, in Fig. 16.5(b). Clearly, for

a positive bendingmoment σz is positive, i.e. tensile, when y is positive and compressive

(i.e. negative) when y is negative. Thus in Fig. 16.5(b)

σz,1 =
My1

I
(compression) σz,2 =

My2

I
(tension) (16.10)

Furthermore, we see from Eq. (16.7) that the curvature, 1/R, of the beam is given by

1

R
=

M

EI
(16.11)

and is therefore directly proportional to the applied bending moment and inversely

proportional to the product EI which is known as the flexural rigidity of the beam.

Example 16.1
The cross-section of a beam has the dimensions shown in Fig. 16.6(a). If the beam

is subjected to a negative bending moment of 100 kNm applied in a vertical plane,

determine the distribution of direct stress through the depth of the section.

The cross-section of the beam is doubly symmetrical so that the centroid, C, of the

section, and therefore the origin of axes, coincides with the mid-point of the web.

Furthermore, the bending moment is applied to the beam section in a vertical plane

so that the x axis becomes the neutral axis of the beam section; we therefore need to

calculate the second moment of area, Ixx, about this axis.

Ixx =
200 × 3003

12
−

175 × 2603

12
= 193.7 × 106mm4 (see Section 16.4)

From Eq. (16.9) the distribution of direct stress, σz, is given by

σz = −
100 × 106

193.7 × 106
y = −0.52y (i)
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200 mm
(a) (b)
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78 N/mm2

Fig. 16.6 Direct stress distribution in beam of Example 16.1.

The direct stress, therefore, varies linearly through the depth of the section from a value

−0.52 × (+150) = −78N/mm2 (compression)

at the top of the beam to

−0.52 × (−150) = +78N/mm2 (tension)

at the bottom as shown in Fig. 16.6(b).

Example 16.2
Now determine the distribution of direct stress in the beam of Example 16.1 if the

bending moment is applied in a horizontal plane and in a clockwise sense about Cy

when viewed in the direction yC.

In this case the beam will bend about the vertical y axis which therefore becomes the

neutral axis of the section. Thus Eq. (16.9) becomes

σz =
M

Iyy
x (i)

where Iyy is the second moment of area of the beam section about the y axis. Again

from Section 16.4

Iyy = 2 ×
20 × 2003

12
+

260 × 253

12
= 27.0 × 106mm4

Hence, substituting for M and Iyy in Eq. (i)

σz =
100 × 106

27.0 × 106
x = 3.7x
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We have not specified a sign convention for bending moments applied in a horizontal

plane. However, a physical appreciation of the problem shows that the left-hand edges

of the beam are in compression while the right-hand edges are in tension. Again the

distribution is linear and varies from 3.7× (−100)= −370N/mm2 (compression) at

the left-hand edges of each flange to 3.7× (+100)= +370N/mm2 (tension) at the

right-hand edges.

We note that the maximum stresses in this example are very much greater than those

in Example 16.1. This is due to the fact that the bulk of the material in the beam section

is concentrated in the region of the neutral axis where the stresses are low. The use of

an I-section in this manner would therefore be structurally inefficient.

Example 16.3
The beam section of Example 16.1 is subjected to a bending moment of 100 kNm

applied in a plane parallel to the longitudinal axis of the beam but inclined at 30◦ to the

left of vertical. The sense of the bending moment is clockwise when viewed from the

left-hand edge of the beam section. Determine the distribution of direct stress.

The bending moment is first resolved into two components, Mx in a vertical plane

and My in a horizontal plane. Equation (16.9) may then be written in two forms

σz =
Mx

Ixx
y σz =

My

Iyy
x (i)

The separate distributions can then be determined and superimposed. A more direct

method is to combine the two equations (i) to give the total direct stress at any point

(x, y) in the section. Thus

σz =
Mx

Ixx
y +

My

Iyy
x (ii)

Now

Mx = 100 cos 30◦= 86.6 kNm

My = 100 sin 30◦ = 50.0 kNm

}

(iii)

Mx is, in this case, a positive bending moment producing tension in the upper half of

the beamwhere y is positive.AlsoMy produces tension in the left-hand half of the beam

where x is negative; we shall therefore callMy a negative bendingmoment. Substituting

the values ofMx andMy from Eq. (iii) but with the appropriate sign in Eq. (ii) together

with the values of Ixx and Iyy from Examples 16.1 and 16.2 we obtain

σz =
86.6 × 106

193.7 × 106
y −

50.0 × 106

27.0 × 106
x (iv)

or

σz = 0.45y − 1.85x (v)

Equation (v) gives the value of direct stress at any point in the cross-section of the beam

and may also be used to determine the distribution over any desired portion. Thus on
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the upper edge of the top flange y= +150mm, 100mm≥ x≥ −100mm, so that the

direct stress varies linearly with x. At the top left-hand corner of the top flange

σz = 0.45 × (+150) − 1.85 × (−100) = +252.5N/mm2 (tension)

At the top right-hand corner

σz = 0.45 × (+150) − 1.85 × (+100) = −117.5N/mm2 (compression)

The distributions of direct stress over the outer edge of each flange and along the vertical

axis of symmetry are shown in Fig. 16.7. Note that the neutral axis of the beam section

does not in this case coincide with either the x or y axis, although it still passes through

the centroid of the section. Its inclination, α, to the x axis, say, can be found by setting

σz = 0 in Eq. (v). Then

0 = 0.45y − 1.85x

or

y

x
=

1.85

0.45
= 4.11 = tan α

which gives

α = 76.3◦

Note that α may be found in general terms from Eq. (ii) by again setting σz = 0. Hence

y

x
= −

MyIxx

MxIyy
= tan α (16.12)

67.5 N/mm2

67.5 N/mm2

67.5 N/mm2

67.5 N/mm2Neutral axis

252.5 N/mm2

252.5 N/mm2

117.5 N/mm2

117.5 N/mm2

a

Fig. 16.7 Direct stress distribution in beam of Example 16.3.
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(a) (b) (c)

Compression

Tension

Fig. 16.8 Anticlastic bending of a beam section.

or

tan α =
MyIxx

MxIyy

since y is positive and x is positive for a positive value of α. We shall define in a slightly

different way in Section 16.2.4 for beams of unsymmetrical section.

16.1.3 Anticlastic bending

In the rectangular beam section shown in Fig. 16.8(a) the direct stress distribution due

to a negative bending moment applied in a vertical plane varies from compression in

the upper half of the beam to tension in the lower half (Fig. 16.8(b)). However, due

to the Poisson effect the compressive stress produces a lateral elongation of the upper

fibres of the beam section while the tensile stress produces a lateral contraction of the

lower. The section does not therefore remain rectangular but distorts as shown in Fig.

16.8(c); the effect is known as anticlastic bending.

Anticlastic bending is of interest in the analysis of thin-walled box beams inwhich the

cross-sections are maintained by stiffening ribs. The prevention of anticlastic distortion

induces local variations in stress distributions in the webs and covers of the box beam

and also in the stiffening ribs.

16.2 Unsymmetrical bending

We have shown that the value of direct stress at a point in the cross-section of a beam

subjected to bending depends on the position of the point, the applied loading and the

geometric properties of the cross-section. It follows that it is of no consequencewhether

or not the cross-section is open or closed. We therefore derive the theory for a beam of

arbitrary cross-section and then discuss its application to thin-walled open and closed

section beams subjected to bending moments.

The assumptions are identical to thosemade for symmetrical bending and are listed in

Section 16.1.1. However, beforewederive an expression for the direct stress distribution

in a beam subjected to bending we shall establish sign conventions for moments, forces

and displacements, investigate the effect of choice of section on the positive directions

of these parameters and discuss the determination of the components of a bending

moment applied in any longitudinal plane.
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16.2.1 Sign conventions and notation

Forces, moments and displacements are referred to an arbitrary system of axes Oxyz,

of which Oz is parallel to the longitudinal axis of the beam and Oxy are axes in the

plane of the cross-section.We assign the symbolsM, S, P, T andw to bending moment,

shear force, axial or direct load, torque and distributed load intensity, respectively, with

suffixes where appropriate to indicate sense or direction. Thus,Mx is a bendingmoment

about the x axis, Sx is a shear force in the x direction and so on. Figure 16.9 shows

positive directions and senses for the above loads and moments applied externally to

a beam and also the positive directions of the components of displacement u, v and w

of any point in the beam cross-section parallel to the x, y and z axes, respectively. A

further condition defining the signs of the bending momentsMx andMy is that they are

positive when they induce tension in the positive xy quadrant of the beam cross-section.

If we refer internal forces and moments to that face of a section which is seen when

viewed in the direction zO then, as shown in Fig. 16.10, positive internal forces and

moments are in the same direction and sense as the externally applied loads whereas

on the opposite face they form an opposing system. The former system, which we shall

use, has the advantage that direct and shear loads are always positive in the positive

directions of the appropriate axes whether they are internal loads or not. It must be

realized, though, that internal stress resultants then become equivalent to externally

applied forces and moments and are not in equilibrium with them.

16.2.2 Resolution of bending moments

A bending moment M applied in any longitudinal plane parallel to the z axis may be

resolved into componentsMx andMy by the normal rules of vectors. However, a visual

appreciation of the situation is often helpful. Referring to Fig. 16.11 we see that a

bending moment M in a plane at an angle θ to Ox may have components of differing

Fig. 16.9 Notation and sign convention for forces, moments and displacements.
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Fig. 16.10 Internal force system.

Fig. 16.11 Resolution of bending moments.

sign depending on the size of θ. In both cases, for the sense of M shown

Mx = M sin θ

My = M cos θ

which give, for θ < π/2,Mx andMy positive (Fig. 16.11(a)) and for θ > π/2,Mx positive

and My negative (Fig. 16.11(b)).

16.2.3 Direct stress distribution due to bending

Consider a beam having the arbitrary cross-section shown in Fig. 16.12(a). The beam

supports bending moments Mx and My and bends about some axis in its cross-section

which is therefore an axis of zero stress or a neutral axis (NA). Let us suppose that the
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Fig. 16.12 Determination of neutral axis position and direct stress due to bending.

origin of axes coincides with the centroid C of the cross-section and that the neutral

axis is a distance p from C. The direct stress σz on an element of area δA at a point (x, y)

and a distance ξ from the neutral axis is, from the third of Eq. (1.42)

σz = Eεz (16.13)

If the beam is bent to a radius of curvature ρ about the neutral axis at this particular

section then, since plane sections are assumed to remain plane after bending, and by a

comparison with symmetrical bending theory

εz =
ξ

ρ

Substituting for εz in Eq. (16.13) we have

σz =
Eξ

ρ
(16.14)

The beam supports pure bending moments so that the resultant normal load on any

section must be zero. Hence
∫

A

σz dA = 0

Therefore, replacing σz in this equation from Eq. (16.14) and cancelling the constant

E/ρ gives
∫

A

ξ dA = 0

i.e. the first moment of area of the cross-section of the beam about the neutral axis is

zero. It follows that the neutral axis passes through the centroid of the cross-section

as shown in Fig. 16.12(b) which is the result we obtained for the case of symmetrical

bending.
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Suppose that the inclination of the neutral axis to Cx is α (measured clockwise from

Cx), then

ξ = x sin α + y cosα (16.15)

and from Eq. (16.14)

σz =
E

ρ
(x sin α + y cosα) (16.16)

The moment resultants of the internal direct stress distribution have the same sense as

the applied moments Mx and My. Therefore

Mx =

∫

A

σzy dA, My =

∫

A

σzx dA (16.17)

Substituting for σz from Eq. (16.16) in (16.17) and defining the second moments of

area of the section about the axes Cx, Cy as

Ixx =

∫

A

y2 dA, Iyy =

∫

A

x2 dA, Ixy =

∫

A

xy dA

gives

Mx =
E sin α

ρ
Ixy +

E cosα

ρ
Ixx, My =

E sin α

ρ
Iyy +

E cosα

ρ
Ixy

or, in matrix form
{

Mx

My

}

=
E

ρ

[

Ixy Ixx
Iyy Ixy

] {

sin α

cosα

}

from which

E

ρ

{

sin α

cosα

}

=

[

Ixy Ixx
Iyy Ixy

]−1 {

Mx

My

}

i.e.

E

ρ

{

sin α

cosα

}

=
1

IxxIyy − I2xy

[

−Ixy Ixx
Iyy −Ixy

] {

Mx

My

}

so that, from Eq. (16.16)

σz =

(

MyIxx − MxIxy

IxxIyy − I2xy

)

x +

(

MxIyy − MyIxy

IxxIyy − I2xy

)

y (16.18)

Alternatively, Eq. (16.18) may be rearranged in the form

σz =
Mx(Iyyy − Ixyx)

IxxIyy − I2xy
+

My(Ixxx − Ixyy)

IxxIyy − I2xy
(16.19)

From Eq. (16.19) it can be seen that if, say, My = 0 the moment Mx produces a stress

which varies with both x and y; similarly for My if Mx = 0.
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In the case where the beam cross-section has either (or both) Cx or Cy as an axis of

symmetry the product second moment of area Ixy is zero and Cxy are principal axes.

Equation (16.19) then reduces to

σz =
Mx

Ixx
y +

My

Iyy
x (16.20)

Further, if either My or Mx is zero then

σz =
Mx

Ixx
y or σz =

My

Iyy
x (16.21)

Equations (16.20) and (16.21) are those derived for the bending of beams having at

least a singly symmetrical cross-section (see Section 16.1). It may also be noted that

in Eq. (16.21) σz = 0 when, for the first equation, y= 0 and for the second equation

when x= 0. Therefore, in symmetrical bending theory the x axis becomes the neutral

axis when My = 0 and the y axis becomes the neutral axis when Mx = 0. Thus we see

that the position of the neutral axis depends on the form of the applied loading as well

as the geometrical properties of the cross-section.

There exists, in any unsymmetrical cross-section, a centroidal set of axes for which

the product second moment of area is zero (see Ref. [1]). These axes are then principal

axes and the direct stress distribution referred to these axes takes the simplified form of

Eqs (16.20) or (16.21). It would therefore appear that the amount of computation can be

reduced if these axes are used. This is not the case, however, unless the principal axes

are obvious from inspection since the calculation of the position of the principal axes,

the principal sectional properties and the coordinates of points at which the stresses are

to be determined consumes a greater amount of time than direct use of Eqs (16.18) or

(16.19) for an arbitrary, but convenient set of centroidal axes.

16.2.4 Position of the neutral axis

The neutral axis always passes through the centroid of area of a beam’s cross-section

but its inclination α (see Fig. 16.12(b)) to the x axis depends on the form of the applied

loading and the geometrical properties of the beam’s cross-section.

At all points on the neutral axis the direct stress is zero. Therefore, from Eq. (16.18)

0 =

(

MyIxx − MxIxy

IxxIyy − I2xy

)

xNA +

(

MxIyy − MyIxy

IxxIyy − I2xy

)

yNA

where xNA and yNA are the coordinates of any point on the neutral axis. Hence

yNA

xNA
= −

MyIxx − MxIxy

MxIyy − MyIxy

or, referring to Fig. 16.12(b) and noting that when α is positive xNA and yNA are of

opposite sign

tan α =
MyIxx − MxIxy

MxIyy − MyIxy
(16.22)
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Example 16.4
A beam having the cross-section shown in Fig. 16.13 is subjected to a bending moment

of 1500Nm in a vertical plane. Calculate the maximum direct stress due to bending

stating the point at which it acts.

Fig. 16.13 Cross-section of beam in Example 16.4.

The position of the centroid of the section may be found by taking moments of areas

about some convenient point. Thus

(120 × 8 + 80 × 8)y = 120 × 8 × 4 + 80 × 8 × 48

giving

y = 21.6mm

and

(120 × 8 + 80 × 8)x = 80 × 8 × 4 + 120 × 8 × 24

giving

x = 16mm

The next step is to calculate the section properties referred to axes Cxy (see Section

16.4)

Ixx =
120 × (8)3

12
+ 120 × 8 × (17.6)2 +

8 × (80)3

12
+ 80 × 8 × (26.4)2

= 1.09 × 106mm4

Iyy =
8 × (120)3

12
+ 120 × 8 × (8)2 +

80 × (8)3

12
+ 80 × 8 × (12)2

= 1.31 × 106mm4

Ixy = 120 × 8 × 8 × 17.6 + 80 × 8 × (−12) × (−26.4)

= 0.34 × 106mm4
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Since Mx = 1500Nm and My = 0 we have, from Eq. (16.19)

σz = 1.5y − 0.39x (i)

in which the units are N and mm.

By inspection of Eq. (i) we see that σx will be a maximum at F where x= −8mm,

y= −66.4mm. Thus

σz,max = −96N/mm2 (compressive)

In some cases the maximum value cannot be obtained by inspection so that values of

σz at several points must be calculated.

16.2.5 Load intensity, shear force and bending moment
relationships, general case

Consider an element of length δz of a beam of unsymmetrical cross-section subjected

to shear forces, bending moments and a distributed load of varying intensity, all in the

yz plane as shown in Fig. 16.14. The forces and moments are positive in accordance

with the sign convention previously adopted. Over the length of the element we may

assume that the intensity of the distributed load is constant. Therefore, for equilibrium

of the element in the y direction

(

Sy +
∂Sy

∂z
δz

)

+ wyδz − Sy = 0

from which

wy = −
∂Sy

∂z

Taking moments about A we have

(

Mx +
∂Mx

∂z
δz

)

−

(

Sy +
∂Sy

∂z
δz

)

δz − wy

(δz)2

2
− Mx = 0

Fig. 16.14 Equilibrium of beam element supporting a general force system in the yz plane.
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or, when second-order terms are neglected

Sy =
∂Mx

∂z

We may combine these results into a single expression

−wy =
∂Sy

∂z
=

∂2Mx

∂z2
(16.23)

Similarly for loads in the xz plane

−wx =
∂Sx

∂z
=

∂2My

∂z2
(16.24)

16.3 Deflections due to bending

We have noted that a beam bends about its neutral axis whose inclination relative to

arbitrary centroidal axes is determined from Eq. (16.22). Suppose that at some section

of an unsymmetrical beam the deflection normal to the neutral axis (and therefore

an absolute deflection) is ζ, as shown in Fig. 16.15. In other words the centroid C

is displaced from its initial position CI through an amount ζ to its final position CF.

Suppose also that the centre of curvature R of the beam at this particular section is on

the opposite side of the neutral axis to the direction of the displacement ζ and that the

radius of curvature is ρ. For this position of the centre of curvature and from the usual

approximate expression for curvature we have

1

ρ
=

d2ζ

dz2
(16.25)

The components u and v of ζ are in the negative directions of the x and y axes,

respectively, so that

u = −ζ sin α v = −ζ cosα (16.26)

Fig. 16.15 Determination of beam deflection due to bending.
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Differentiating Eqs (16.26) twice with respect to z and then substituting for ζ from Eq.

(16.25) we obtain

sin α

ρ
= −

d2u

dz2
,

cosα

ρ
= −

d2v

dz2
(16.27)

In the derivation of Eq. (16.18) we see that

1

ρ

{

sin α

cosα

}

=
1

E(IxxIyy − I2xy)

[

−Ixy Ixx
Iyy −Ixy

] {

Mx

My

}

(16.28)

Substituting in Eqs (16.28) for sin α/ρ and cos α/ρ from Eqs (16.27) and writing

u′′ = d2u/dz2, v′′ = d2v/dz2 we have

{

u′′

v′′

}

=
−1

E(IxxIyy − I2xy)

[

−Ixy Ixx
Iyy −Ixy

] {

Mx

My

}

(16.29)

It is instructive to rearrange Eq. (16.29) as follows

{

Mx

My

}

= −E

[

Ixy Ixx
Iyy Ixy

] {

u′′

v′′

}

(see derivation of Eq. (16.18)) (16.30)

i.e.

Mx = −EIxyu
′′ − EIxxv

′′

My = −EIyyu
′′ − EIxyv

′′

}

(16.31)

The first of Eqs (16.31) shows that Mx produces curvatures, i.e. deflections, in both

the xz and yz planes even though My = 0; similarly for My when Mx = 0. Thus, for

example, an unsymmetrical beam will deflect both vertically and horizontally even

though the loading is entirely in a vertical plane. Similarly, vertical and horizontal

components of deflection in an unsymmetrical beam are produced by horizontal loads.

For a beam having either Cx or Cy (or both) as an axis of symmetry, Ixy = 0 and

Eqs (16.29) reduce to

u′′ = −
My

EIyy
, v′′ = −

Mx

EIxx
(16.32)

Example 16.5
Determine the deflection curve and the deflection of the free end of the cantilever shown

in Fig. 16.16(a); the flexural rigidity of the cantilever is EI and its section is doubly

symmetrical.

The load W causes the cantilever to deflect such that its neutral plane takes up the

curved shape shown Fig. 16.16(b); the deflection at any section Z is then v while that

at its free end is vtip. The axis system is chosen so that the origin coincides with the

built-in end where the deflection is clearly zero.

The bending moment, M, at the section Z is, from Fig. 16.16(a)

M = W (L − z) (i)



470 Bending of open and closed, thin-walled beams

EI

L

W
Z

(a)

(b)

y

C z
y

ytip

Fig. 16.16 Deflection of a cantilever beam carrying a concentrated load at its free end (Example 16.5).

Substituting for M in the second of Eq. (16.32)

v′′ = −
W

EI
(L − z)

or in more convenient form

EIv′′ = −W (L − z) (ii)

Integrating Eq. (ii) with respect to z gives

EIv′′ = −W

(

Lz −
z2

2

)

+ C1

where C1 is a constant of integration which is obtained from the boundary condition

that v′ = 0 at the built-in end where z= 0. Hence C1 = 0 and

EIv′ = −W

(

Lz −
z2

2

)

(iii)

Integrating Eq. (iii) we obtain

EIv = −W

(

Lz2

2
−

z3

6

)

+ C2

in which C2 is again a constant of integration. At the built-in end v = 0 when z= 0 so

that C2 = 0. Hence the equation of the deflection curve of the cantilever is

v = −
W

6EI
(3Lz2 − z3) (iv)

The deflection, vtip, at the free end is obtained by setting z=L in Eq. (iv). Then

vtip = −
WL3

3EI
(v)

and is clearly negative and downwards.



16.3 Deflections due to bending 471

Example 16.6
Determine the deflection curve and the deflection of the free end of the cantilever shown

in Fig. 16.17(a). The cantilever has a doubly symmetrical cross-section.

EI

w

Z

(a) L

(b)

y

C z
y

ytip

Fig. 16.17 Deflection of a cantilever beam carrying a uniformly distributed load.

The bending moment, M, at any section Z is given by

M =
w

2
(L − z)2 (i)

Substituting for M in the second of Eq. (16.32) and rearranging we have

EIv′′ = −
w

2
(L − z)2 = −

w

2
(L2 − 2Lz + z2) (ii)

Integration of Eq. (ii) yields

EIv′ = −
w

2

(

L2z − Lz2 +
z3

3

)

+ C1

When z= 0 at the built-in end, v′ = 0 so that C1 = 0 and

EIv′ = −
w

2

(

L2z − Lz2 +
z3

3

)

(iii)

Integrating Eq. (iii) we have

EIv = −
w

2

(

L2
z2

2
−

Lz3

3
+

z4

12

)

+ C2

and since v = 0 when x= 0, C2 = 0. The deflection curve of the beam therefore has the

equation

v = −
w

24EI
(6L2z2 − 4Lz3 + z4) (iv)
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and the deflection at the free end where x=L is

vtip = −
wL4

8EI
(v)

which is again negative and downwards.

Example 16.7
Determine the deflection curve and the mid-span deflection of the simply supported

beam shown in Fig. 16.18(a); the beam has a doubly symmetrical cross-section.

(b)

C

Z

EI

z

y

L

w

(a)

2
wL

2
wL

y

Fig. 16.18 Deflection of a simply supported beam carrying a uniformly distributed load (Example 16.7).

The support reactions are each wL/2 and the bending moment, M, at any section Z,

a distance z from the left-hand support is

M = −
wL

2
z +

wz2

2
(i)

Substituting for M in the second of Eq. (16.32) we obtain

EIv′′ =
w

2
(Lz − z2) (ii)

Integrating we have

EIv′ =
w

2

(

Lz2

2
−

z3

3

)

+ C1

From symmetry it is clear that at the mid-span section the gradient v′ = 0.

Hence

0 =
w

2

(

L3

8
−

L3

24

)

+ C1
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which gives

C1 = −
wL3

24

Therefore

EIv′ =
w

24
(6Lz2 − 4z3 − L3) (iii)

Integrating again gives

EIv =
w

24
(2Lz3 − z4 − L3z) + C2

Since v = 0 when z= 0 (or since v = 0 when z=L) it follows that C2 = 0 and the

deflected shape of the beam has the equation

v =
w

24EI
(2Lz3 − z4 − L3z) (iv)

The maximum deflection occurs at mid-span where z=L/2 and is

vmid-span = −
5wL4

384EI
(v)

So far the constants of integrationwere determined immediately they arose. However,

in some cases a relevant boundary condition, say a value of gradient, is not obtainable.

The method is then to carry the unknown constant through the succeeding integration

and use known values of deflection at two sections of the beam. Thus in the previous

example Eq. (ii) is integrated twice to obtain

EIv =
w

2

(

Lz3

6
−

z4

12

)

+ C1z + C2

The relevant boundary conditions are v = 0 at z= 0 and z=L. The first of these gives

C2 = 0 while from the second we have C1 = −wL3/24. Thus, the equation of the

deflected shape of the beam is

v =
w

24EI
(2Lz3 − z4 − L3z)

as before.

Example 16.8
Figure 16.19(a) shows a simply supported beam carrying a concentrated load W at

mid-span. Determine the deflection curve of the beam and the maximum deflection if

the beam section is doubly symmetrical.

The support reactions are each W /2 and the bending moment M at a section Z a

distance z(≤L/2) from the left-hand support is

M = −
W

2
z (i)
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y

(a)

Z

C

W

EI

L

z

y

(b)

2
W

2
W

Fig. 16.19 Deflection of a simply supported beam carrying a concentrated load at mid-span (Example 16.8).

From the second of Eq. (16.32) we have

EIv′′ =
W

2
z (ii)

Integrating we obtain

EIv′ =
W

2

z2

2
+ C1

From symmetry the slope of the beam is zero at mid-span where z=L/2. Thus

C1 = −WL2/16 and

EIv′ =
W

16
(4z2 − L2) (iii)

Integrating Eq. (iii) we have

EIv =
W

16

(

4z3

3
− L2z

)

+ C2

and when z= 0, v = 0 so that C2 = 0. The equation of the deflection curve is, therefore

v =
W

48EI
(4z3 − 3L2z) (iv)

The maximum deflection occurs at mid-span and is

vmid-span = −
WL3

48EI
(v)

Note that in this problem we could not use the boundary condition that v = 0 at z=L

to determine C2 since Eq. (i) applies only for 0≤ z≤L/2; it follows that Eqs (iii) and

(iv) for slope and deflection apply only for 0≤ z≤ L/2 although the deflection curve is

clearly symmetrical about mid-span.

Examples 16.5–16.8 are frequently regarded as ‘standard’ cases of beam deflection.
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16.3.1 Singularity functions

The double integrationmethod used in Examples 16.5–16.8 becomes extremely lengthy

when even relatively small complications such as the lack of symmetry due to an offset

load are introduced. For example, the addition of a second concentrated load on a

simply supported beam would result in a total of six equations for slope and deflection

producing six arbitrary constants. Clearly the computation involved in determining

these constants would be tedious, even though a simply supported beam carrying two

concentrated loads is a comparatively simple practical case. An alternative approach

is to introduce so-called singularity or half-range functions. Such functions were first

applied to beam deflection problems by Macauley in 1919 and hence the method is

frequently known as Macauley’s method.

We now introduce a quantity [z− a] and define it to be zero if (z− a) < 0, i.e. z< a,

and to be simply (z− a) if z> a. The quantity [z− a] is known as a singularity or

half-range function and is defined to have a value only when the argument is positive in

which case the square brackets behave in an identical manner to ordinary parentheses.

Example 16.9
Determine the position and magnitude of the maximum upward and downward

deflections of the beam shown in Fig. 16.20.

B

Z

F

2W

C DA

W

z

EI

W

RA RF

y

a a a a

Fig. 16.20 Macauley’s method for the deflection of a simply supported beam (Example 16.9).

A consideration of the overall equilibrium of the beam gives the support reactions;

thus

RA =
3

4
W (upward) RF =

3

4
W (downward)

Using the method of singularity functions and taking the origin of axes at the left-hand

support, we write down an expression for the bending moment, M, at any section Z

between D and F, the region of the beam furthest from the origin. Thus

M = −RAz + W [z − a] + W [z − 2a] − 2W [z − 3a] (i)

Substituting for M in the second of Eq. (16.32) we have

EIv′′ =
3

4
Wz − W [z − a] − W [z − 2a] + 2W [z − 3a] (ii)
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Integrating Eq. (ii) and retaining the square brackets we obtain

EIv′ =
3

8
Wz2 −

W

2
[z − a]2 −

W

2
[z − 2a]2 + W [z − 3a]2 + C1 (iii)

and

EIv =
1

8
Wz3 −

W

6
[z − a]3 −

W

6
[z − 2a]3 +

W

3
[z − 3a]3 + C1z + C2 (iv)

in which C1 and C2 are arbitrary constants. When z= 0 (at A), v = 0 and hence C2 = 0.

Note that the second, third and fourth terms on the right-hand side of Eq. (iv) disappear

for z< a. Also v = 0 at z= 4a (F) so that, from Eq. (iv), we have

0 =
W

8
64a3 −

W

6
27a3 −

W

6
8a3 +

W

3
a3 + 4aC1

which gives

C1 = −
5

8
Wa2

Equations (iii) and (iv) now become

EIv′ =
3

8
Wz2 −

W

2
[z − a]2 −

W

2
[z − 2a]2 + W [z − 3a]2 −

5

8
Wa2 (v)

and

EIv =
1

8
Wz3 −

W

6
[z − a]3 −

W

6
[z − 2a]3 +

W

3
[z − 3a]3 −

5

8
Wa2z (vi)

respectively.

To determine the maximum upward and downward deflections we need to know in

which bays v′ = 0 and therebywhich terms in Eq. (v) disappearwhen the exact positions

are being located. One method is to select a bay and determine the sign of the slope of

the beam at the extremities of the bay. A change of sign will indicate that the slope is

zero within the bay.

By inspection of Fig. 16.20 it seems likely that the maximum downward deflection

will occur in BC. At B, using Eq. (v)

EIv′ =
3

8
Wa2 −

5

8
Wa2

which is clearly negative. At C

EIv′ =
3

8
W4a2 −

W

2
a2 −

5

8
Wa2

which is positive. Therefore, the maximum downward deflection does occur in BC and

its exact position is located by equating v′ to zero for any section in BC. Thus, from

Eq. (v)

0 =
3

8
Wz2 −

W

2
[z − a]2 −

5

8
Wa2
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or, simplifying,

0 = z2 − 8az + 9a2 (vii)

Solution of Eq. (vii) gives

z = 1.35a

so that the maximum downward deflection is, from Eq. (vi)

EIv =
1

8
W (1.35a)3 −

W

6
(0.35a)3 −

5

8
Wa2(1.35a)

i.e.

vmax(downward) = −
0.54Wa3

EI

In a similar manner it can be shown that the maximum upward deflection lies between

D and F at z= 3.42a and that its magnitude is

vmax(upward) =
0.04Wa3

EI

An alternative method of determining the position of maximum deflection is to select a

possible bay, set v′ = 0 for that bay and solve the resulting equation in z. If the solution

gives a value of z that lies within the bay, then the selection is correct, otherwise the

procedure must be repeated for a second and possibly a third and a fourth bay. This

method is quicker than the former if the correct bay is selected initially; if not, the

equation corresponding to each selected bay must be completely solved, a procedure

clearly longer than determining the sign of the slope at the extremities of the bay.

Example 16.10
Determine the position and magnitude of the maximum deflection in the beam of

Fig. 16.21.

Following the method of Example 16.9 we determine the support reactions and find

the bending moment,M, at any section Z in the bay furthest from the origin of the axes.

A B C D

Z

L/2

EI

L/4 L/4

w

y

z

RD �
5wL

32RA �
3wL

32

Fig. 16.21 Deflection of a beam carrying a part span uniformly distributed load (Example 16.10).
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Then

M = −RAz + w
L

4

[

z −
5L

8

]

(i)

Examining Eq. (i) we see that the singularity function [z− 5L/8] does not become zero

until z≤ 5L/8 although Eq. (i) is only valid for z≥ 3L/4. To obviate this difficulty we

extend the distributed load to the support D while simultaneously restoring the status

quo by applying an upward distributed load of the same intensity and length as the

additional load (Fig. 16.22).

L/2

EI
RA

RD

L/4 L/4

A B

C
Z

D

w

z

y
w

Fig. 16.22 Method of solution for a part span uniformly distributed load.

At the section Z, a distance z fromA, the bending moment is now given by

M = −RAz +
w

2

[

z −
L

2

]2

−
w

2

[

z −
3L

4

]2

(ii)

Equation (ii) is now valid for all sections of the beam if the singularity functions are

discarded as they become zero. Substituting Eq. (ii) into the second of Eqs (16.32) we

obtain

EIv′′ =
3

32
wLz −

w

2

[

z −
L

2

]2

+
w

2

[

z −
3L

4

]2

(iii)

Integrating Eq. (iii) gives

EIv′ =
3

64
wLz2 −

w

6

[

z −
L

2

]3

+
w

6

[

z −
3L

4

]3

+ C1 (iv)

EIv =
wLz3

64
−

w

24

[

z −
L

2

]4

+
w

24

[

z −
3L

4

]4

+ C1z + C2 (v)

where C1 and C2 are arbitrary constants. The required boundary conditions are v = 0

when z= 0 and z=L. From the first of these we obtain C2 = 0 while the second gives

0 =
wL4

64
−

w

24

(

L

2

)4

+
w

24

(

L

4

)4

+ C1L

from which

C1 = −
27wL3

2048
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Equations (iv) and (v) then become

EIv′ =
3

64
wLz2 −

w

6

[

z −
L

2

]3

+
w

6

[

z −
3L

4

]3

−
27wL3

2048
(vi)

and

EIv =
wLz3

64
−

w

24

[

z −
L

2

]4

+
w

24

[

z −
3L

4

]4

−
27wL3

2048
z (vii)

In this problem, themaximum deflection clearly occurs in the region BC of the beam.

Thus equating the slope to zero for BC we have

0 =
3

64
wLz2 −

w

6

[

z −
L

2

]3

−
27wL3

2048

which simplifies to

z3 − 1.78Lz2 + 0.75zL2 − 0.046L3 = 0 (viii)

Solving Eq. (viii) by trial and error, we see that the slope is zero at z≃ 0.6L. Hence

from Eq. (vii) the maximum deflection is

vmax = −
4.53 × 10−3wL4

EI

Example 16.11
Determine the deflected shape of the beam shown in Fig. 16.23.

In this problem an external moment M0 is applied to the beam at B. The support

reactions are found in the normal way and are

RA = −
M0

L
(downwards) RC =

M0

L
(upwards)

A

B

C

Z

z

b

M0

L

EI

y

RA � �
M0

L
RC �

M0

L

Fig. 16.23 Deflection of a simply supported beam carrying a point moment (Example 16.11).
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The bending moment at any section Z between B and C is then given by

M = −RAz − M0 (i)

Equation (i) is valid only for the region BC and clearly does not contain a singularity

function which would cause M0 to vanish for z≤ b. We overcome this difficulty by

writing

M = −RAz − M0[z − b]0 (Note: [z − b]0 = 1) (ii)

Equation (ii) has the same value as Eq. (i) but is now applicable to all sections of the

beam since [z− b]0 disappears when z≤ b. Substituting for M from Eq. (ii) in the

second of Eq. (16.32) we obtain

EIv′′ = RAz + M0[z − b]0 (iii)

Integration of Eq. (iii) yields

EIv′ = RA
z2

2
+ M0[z − b] + C1 (vi)

and

EIv = RA
z3

6
+

M0

2
[z − b]2 + C1z + C2 (v)

whereC1 andC2 are arbitrary constants. The boundary conditions are v = 0 when z= 0

and z=L. From the first of these we have C2 = 0 while the second gives

0 = −
M0

L

L3

6
+

M0

2
[L − b]2 + C1L

from which

C1 = −
M0

6L
(2L2 − 6Lb + 3b2)

The equation of the deflection curve of the beam is then

v =
M0

6EIL
{z3 + 3L[z − b]2 − (2L2 − 6Lb + 3b2)z} (vi)

Example 16.12
Determine the horizontal and vertical components of the tip deflection of the cantilever

shown in Fig. 16.24. The second moments of area of its unsymmetrical section are Ixx,

Iyy and Ixy.

From Eqs (16.29)

u′′ =
MxIxy − MyIxx

E(IxxIyy − I2xy)
(i)
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Fig. 16.24 Determination of the deflection of a cantilever.

In this case Mx =W (L− z), My = 0 so that Eq. (i) simplifies to

u′′ =
WIxy

E(IxxIyy − I2xy)
(L − z) (ii)

Integrating Eq. (ii) with respect to z

u′ =
WIxy

E(IxxIyy − I2xy)

(

Lz −
z2

2
+ A

)

(iii)

and

u =
WIxy

E(IxxIyy − I2xy)

(

L
z2

2
−

z3

6
+ Az + B

)

(iv)

in which u′ denotes du/dz and the constants of integration A and B are found from

the boundary conditions, viz. u′ = 0 and u= 0 when z= 0. From the first of these and

Eq. (iii), A= 0, while from the second and Eq. (iv), B= 0. Hence the deflected shape

of the beam in the xz plane is given by

u =
WIxy

E(IxxIyy − I2xy)

(

L
z2

2
−

z3

6

)

(v)

At the free end of the cantilever (z=L) the horizontal component of deflection is

uf.e. =
WIxyL

3

3E(IxxIyy − I2xy)
(vi)

Similarly, the vertical component of the deflection at the free end of the cantilever is

vf.e. =
−WIyyL

3

3E(IxxIyy − I2xy)
(vii)

The actual deflection δf.e. at the free end is then given by

δf.e. = (u2f.e. + v2f.e.)
1
2

at an angle of tan−1 uf.e./vf.e. to the vertical.
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Note that if either Cx or Cy were an axis of symmetry, Ixy = 0 and Eqs (vi) and (vii)

reduce to

uf.e. = 0 vf.e. =
−WL3

3EIxx

the well-known results for the bending of a cantilever having a symmetrical cross-

section and carrying a concentrated vertical load at its free end (see Example 16.5).

16.4 Calculation of section properties

It will be helpful at this stage to discuss the calculation of the various section properties

required in the analysis of beams subjected to bending. Initially, however, two useful

theorems are quoted.

16.4.1 Parallel axes theorem

Consider the beam section shown in Fig. 16.25 and suppose that the second moment of

area, IC, about an axis through its centroid C is known. The second moment of area, IN,

about a parallel axis, NN, a distance b from the centroidal axis is then given by

IN = IC + Ab2 (16.33)

C

N N

b

Cross-sectional area, A

Fig. 16.25 Parallel axes theorem.

16.4.2 Theorem of perpendicular axes

In Fig. 16.26 the second moments of area, Ixx and Iyy, of the section about Ox and Oy

are known. The second moment of area about an axis through O perpendicular to the

y

O

x

Fig. 16.26 Theorem of perpendicular axes.
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plane of the section (i.e. a polar second moment of area) is then

Io = Ixx + Iyy (16.34)

16.4.3 Second moments of area of standard sections

Many sections may be regarded as comprising a number of rectangular shapes. The

problem of determining the properties of such sections is simplified if the second

moments of area of the rectangular components are known and use is made of the

parallel axes theorem. Thus, for the rectangular section of Fig. 16.27.

Ixx =

∫

A

y2dA =

∫ d/2

−d/2

by2dy = b

[

y3

3

]d/2

−d/2

which gives

Ixx =
bd3

12
(16.35)

d

N

C

N
b

y

x

y

�y

Fig. 16.27 Second moments of area of a rectangular section.

Similarly

Iyy =
db3

12
(16.36)

Frequently it is useful to know the second moment of area of a rectangular section

about an axis which coincides with one of its edges. Thus in Fig. 16.27, and using the

parallel axes theorem

IN =
bd3

12
+ bd

(

−
d

2

)2

=
bd3

3
(16.37)

Example 16.13
Determine the second moments of area Ixx and Iyy of the I-section shown in Fig. 16.28.

Using Eq. (16.35)

Ixx =
bd3

12
−

(b − tw)d
3
w

12
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b

y

O

x
ddw

tf

tf

tw

Fig. 16.28 Second moments of area of an I-Section.

Alternatively, using the parallel axes theorem in conjunction with Eq. (16.35)

Ixx = 2

[

bt3f

12
+ btf

(

dw+tf

2

)2
]

+
twd

3
w

12

The equivalence of these two expressions for Ixx is most easily demonstrated by a

numerical example.

Also, from Eq. (16.36)

Iyy = 2
tfb

3

12
+

dwt
3
w

12

It is also useful to determine the second moment of area, about a diameter, of a circular

section. In Fig. 16.29 where the x and y axes pass through the centroid of the section

Ixx =

∫

A

y2dA =

∫ d/2

−d/2

2

(

d

2
cos θ

)

y2dy (16.38)

x

y

O

u

y

�y

d
2

Fig. 16.29 Second moments of area of a circular section.
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Integration of Eq. (16.38) is simplified if an angular variable, θ, is used. Thus

Ixx =

∫ π/2

−π/2

d cos θ

(

d

2
sin θ

)2
d

2
cos θ dθ

i.e.

Ixx =
d4

8

∫ π/2

−π/2

cos2 θ sin2 θ dθ

which gives

Ixx =
πd4

64
(16.39)

Clearly from symmetry

Iyy =
πd4

64
(16.40)

Using the theorem of perpendicular axes, the polar second moment of area, Io, is given

by

Io = Ixx + Iyy =
πd4

32
(16.41)

16.4.4 Product second moment of area

The product second moment of area, Ixy, of a beam section with respect to x and y axes

is defined by

Ixy =

∫

A

xy dA (16.42)

Thus each element of area in the cross-section is multiplied by the product of its coord-

inates and the integration is taken over the complete area. Although second moments

of area are always positive since elements of area are multiplied by the square of one of

their coordinates, it is possible for Ixy to be negative if the section lies predominantly

in the second and fourth quadrants of the axes system. Such a situation would arise in

the case of the Z-section of Fig. 16.30(a) where the product second moment of area of

each flange is clearly negative.

A special case arises when one (or both) of the coordinate axes is an axis of symmetry

so that for any element of area, δA, having the product of its coordinates positive, there

is an identical element for which the product of its coordinates is negative (Fig. 16.30

(b)). Summation (i.e. integration) over the entire section of the product second moment

of area of all such pairs of elements results in a zero value for Ixy.

We have shown previously that the parallel axes theorem may be used to calculate

second moments of area of beam sections comprising geometrically simple compon-

ents. The theorem can be extended to the calculation of product second moments of

area. Let us suppose that we wish to calculate the product second moment of area,
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(a)

Y

y

a

b

Cross-sectional
area, A

C

O

(c)

X

(b)

O

�A �A

y

x

x

O

y

x

Fig. 16.30 Product second moment of area.

Ixy, of the section shown in Fig. 16.30(c) about axes xy when IXY about its own, say

centroidal, axes system CXY is known. From Eq. (16.42)

Ixy =

∫

A

xy dA

or

Ixy =

∫

A

(X − a)(Y − b)dA

which, on expanding, gives

Ixy =

∫

A

XY dA − b

∫

A

XdA − a

∫

A

Y dA + ab

∫

A

dA

If X and Y are centroidal axes then
∫

A
X dA=

∫

A
Y dA= 0. Hence

Ixy = IXY + abA (16.43)

It can be seen from Eq. (16.43) that if either CX or CY is an axis of symmetry, i.e.

IXY = 0, then

Ixy = abA (16.44)

Therefore for a section component having an axis of symmetry that is parallel to

either of the section reference axes the product second moment of area is the product

of the coordinates of its centroid multiplied by its area.

16.4.5 Approximations for thin-walled sections

Wemayexploit the thin-walled nature of aircraft structures tomake simplifying assump-

tions in the determination of stresses and deflections produced by bending. Thus, the

thickness t of thin-walled sections is assumed to be small compared with their cross-

sectional dimensions so that stresses may be regarded as being constant across the

thickness. Furthermore, we neglect squares and higher powers of t in the computation
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Fig. 16.31 (a) Actual thin-walled channel section; (b) approximate representation of section.

of sectional properties and take the section to be represented by the mid-line of its wall.

As an illustration of the procedurewe shall consider the channel section of Fig. 16.31(a).

The section is singly symmetric about the x axis so that Ixy = 0. The second moment of

area Ixx is then given by

Ixx = 2

[

(b + t/2)t3

12
+

(

b +
t

2

)

th2
]

+ t
[2(h − t/2)]3

12

Expanding the cubed term we have

Ixx = 2

[

(b + t/2)t3

12
+

(

b +
t

2

)

th2
]

+
t

12

[

(2)3
(

h3 − 3h2
t

2
+ 3h

t2

4
−

t3

8

)]

which reduces, after powers of t2 and upwards are ignored, to

Ixx = 2bth2 + t
(2h)3

12

The second moment of area of the section about Cy is obtained in a similar manner.

We see, therefore, that for the purpose of calculating section properties we may

regard the section as being represented by a single line, as shown in Fig. 16.31(b).

Thin-walled sections frequently have inclined or curved walls which complicate the

calculation of section properties. Consider the inclined thin section of Fig. 16.32. Its

second moment of area about a horizontal axis through its centroid is given by

Ixx = 2

∫ a/2

0

ty2 ds = 2

∫ a/2

0

t(s sin β)2 ds

from which

Ixx =
a3t sin2 β

12
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Fig. 16.32 Second moments of area of an inclined thin section.

Similarly

Iyy =
a3t cos2 β

12

The product second moment of area is

Ixy = 2

∫ a/2

0

txy ds

= 2

∫ a/2

0

t(s cosβ)(s sin β) ds

which gives

Ixy =
a3t sin 2β

24

We note here that these expressions are approximate in that their derivation neglects

powers of t2 and upwards by ignoring the second moments of area of the element δs

about axes through its own centroid.

Properties of thin-walled curved sections are found in a similar manner. Thus, Ixx for

the semicircular section of Fig. 16.33 is

Ixx =

∫ πr

0

ty2 ds

Fig. 16.33 Second moment of area of a semicircular section.
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Expressing y and s in terms of a single variable θ simplifies the integration, hence

Ixx =

∫ π

0

t(r cos θ)2r dθ

from which

Ixx =
πr3t

2

Example 16.14
Determine the direct stress distribution in the thin-walled Z-section shown in Fig. 16.34,

produced by a positive bending moment Mx.

Fig. 16.34 Z-section beam of Example 16.14.

The section is antisymmetrical with its centroid at the mid-point of the vertical web.

Therefore, the direct stress distribution is given by either of Eq. (16.18) or (16.19) in

which My = 0. From Eq. (16.19)

σz =
Mx(Iyyy − Ixyx)

IxxIyy − I2xy
(i)

The section properties are calculated as follows

Ixx = 2
ht

2

(

h

2

)2

+
th3

12
=

h3t

3

Iyy = 2
t

3

(

h

2

)3

=
h3t

12

Ixy =
ht

2

(

h

4

) (

h

2

)

+
ht

2

(

−
h

4

) (

−
h

2

)

=
h3t

8
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Substituting these values in Eq. (i)

σz =
Mx

h3t
(6.86y − 10.30x) (ii)

On the top flange y= h/2, 0≤ x≤ h/2 and the distribution of direct stress is given by

σz =
Mx

h3t
(3.43h − 10.30x)

which is linear. Hence

σz,1 = −
1.72Mx

h3t
(compressive)

σz,2 = +
3.43Mx

h3t
(tensile)

In the web h/2≤ y≤ −h/2 and x= 0. Again the distribution is of linear form and is

given by the equation

σz =
Mx

h3t
6.86y

whence

σz,2 = +
3.43Mx

h3t
(tensile)

and

σz,3 = −
3.43Mx

h3t
(compressive)

The distribution in the lower flange may be deduced from antisymmetry; the complete

distribution is then as shown in Fig. 16.35.

Fig. 16.35 Distribution of direct stress in Z-section beam of Example 16.14.
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16.5 Applicability of bending theory

The expressions for direct stress and displacement derived in the above theory are based

on the assumptions that the beam is of uniform, homogeneous cross-section and that

plane sections remain plane after bending. The latter assumption is strictly true only

if the bending moments Mx and My are constant along the beam. Variation of bending

moment implies the presence of shear loads and the effect of these is to deform the beam

section into a shallow, inverted ‘s’ (see Section 2.6). However, shear stresses in beams

whose cross-sectional dimensions are small in relation to their lengths are comparatively

low so that the basic theory of bending may be used with reasonable accuracy.

In thin-walled sections shear stresses produced by shear loads are not small and

must be calculated, although the direct stresses may still be obtained from the basic

theory of bending so long as axial constraint stresses are absent; this effect is discussed

in Chapters 26 and 27. Deflections in thin-walled structures are assumed to result

primarily from bending strains; the contribution of shear strains may be calculated

separately if required.

16.6 Temperature effects

In Section 1.15.1 we considered the effect of temperature change on stress–strain rela-

tionships while in Section 5.11 we examined the effect of a simple temperature gradient

on a cantilever beam of rectangular cross-section using an energy approach. However,

as we have seen, beam sections in aircraft structures are generally thin walled and do

not necessarily have axes of symmetry. We shall now investigate how the effects of

temperature on such sections may be determined.

We have seen that the strain produced by a temperature change �T is given by

ε = α �T (see Eq. (1.55))

It follows from Eq. (1.40) that the direct stress on an element of cross-sectional area

δA is

σ = Eα �T δA (16.45)

Consider now the beam section shown in Fig. 16.36 and suppose that a temperature

variation �T is applied to the complete cross-section, i.e. �T is a function of both x

and y.

The total normal force due to the temperature change on the beam cross-section is

then given by

NT =

∫ ∫

A

Eα �T dA (16.46)

Further, the moments about the x and y axes are

MxT =

∫ ∫

A

Eα �Ty dA (16.47)
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Area, A

NT

MyT

y

y
C

δA

x
MxT

x

Fig. 16.36 Beam section subjected to a temperature rise.

and

MyT =

∫ ∫

A

Eα �Tx dA (16.48)

respectively.

We have noted that beam sections in aircraft structures are generally thin walled so

that Eqs (16.46)–(16.48) may be more easily integrated for such sections by dividing

them into thin rectangular components as we did when calculating section properties.

We then use the Riemann integration technique in which we calculate the contribution

of each component to the normal force and moments and sum them to determine each

resultant. Equations (16.46)–(16.48) then become

NT = �Eα �T Ai (16.49)

MxT = �Eα �Tȳi Ai (16.50)

MyT = �Eα �Tx̄i Ai (16.51)

in which Ai is the cross-sectional area of a component and xi and yi are the coordinates

of its centroid.

Example 16.15
The beam section shown in Fig. 16.37 is subjected to a temperature rise of 2T0 in its

upper flange, a temperature rise of T0 in its web and zero temperature change in its lower

flange. Determine the normal force on the beam section and the moments about the

centroidal x and y axes. The beam section has aYoung’s modulus E and the coefficient

of linear expansion of the material of the beam is α.

From Eq. (16.49)

NT = Eα(2T0 at + T0 2at) = 4Eα at T0



16.6 Temperature effects 493

C

t

y

x
2a

a

a

Fig. 16.37 Beam section of Example 16.15.

From Eq. (16.50)

MxT = Eα[2T0 at(a) + T0 2at(0)] = 2Eα a2t T0

and from Eq. (16.51)

MyT = Eα[2T0 at(−a/2) + T0 2at(0)] = −Eα a2t T0

Note that MyT is negative which means that the upper flange would tend to rotate

out of the paper about the web which agrees with a temperature rise for this part of the

section. The stresses corresponding to the above stress resultants are calculated in the

normal way and are added to those produced by any applied loads.

In some cases the temperature change is not conveniently constant in the components

of a beam section and must then be expressed as a function of x and y. Consider the

thin-walled beam section shown in Fig. 16.38 and suppose that a temperature change

�T (x, y) is applied.

The direct stress on an element δs in the wall of the section is then, from Eq. (16.45)

σ = Eα �T (x, y)t δs
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C

t

x

y

y

x

δs

Fig. 16.38 Thin-walled beam section subjected to a varying temperature change.

Equations (16.46)–(16.48) then become

NT =

∫

A

Eα �T (x, y)t ds (16.52)

MxT =

∫

A

Eα �T (x, y)ty ds (16.53)

MyT =

∫

A

Eα �T (x, y)tx ds (16.54)

Example 16.16
If, in the beam section of Example 16.15, the temperature change in the upper flange

is 2T0 but in the web varies linearly from 2T0 at its junction with the upper flange to

zero at its junction with the lower flange determine the values of the stress resultants;

the temperature change in the lower flange remains zero.

The temperature change at any point in the web is given by

Tw = 2T0(a + y)/2a =
T0

a
(a + y)

Then, from Eqs (16.49) and (16.52)

NT = Eα 2T0 at +

∫ a

−a

Eα
T0

a
(a + y)t ds

i.e. NT = EαT0

{

2at +
1

a

[

ay +
y2

2

]a

−a

}
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which gives

NT = 4EαT0 at

Note that, in this case, the answer is identical to that in Example 16.15 which is to be

expected since the average temperature change in the web is (2T0 + 0)/2=T0 which

is equal to the constant temperature change in the web in Example 16.15.

From Eqs (16.50) and (16.53)

MxT = Eα 2T0at(a) +

∫ a

−a

Eα
T0

a
(a + y)yt ds

i.e.

MxT = EαT0

{

2a2t +
1

a

[

ay2

2
+

y3

3

]a

−a

}

from which

MxT =
8Eαa2tT0

3

Alternatively, the average temperature change T0 in the web may be considered to act

at the centroid of the temperature change distribution. Then

MxT = Eα 2T0at(a) + EαT02at
(a

3

)

i.e.

MxT =
8Eαa2tT0

3
as before

The contribution of the temperature change in the web to MyT remains zero since

the section centroid is in the web; the value of MyT is therefore −Eαa2tT0 as in

Example 16.14.

References

1 Megson, T. H. G., Structures and Stress Analysis, 2nd edition, Elsevier, Oxford, 2005.

Problems

P.16.1 Figure P.16.1 shows the section of an angle purlin. A bending moment of

3000Nm is applied to the purlin in a plane at an angle of 30◦ to the vertical y axis. If

the sense of the bending moment is such that its componentsMx andMy both produce

tension in the positive xy quadrant, calculate the maximum direct stress in the purlin

stating clearly the point at which it acts.

Ans. σz,max = −63.3N/mm2 at C.
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Fig. P.16.1

P.16.2 A thin-walled, cantilever beam of unsymmetrical cross-section supports

shear loads at its free end as shown in Fig. P.16.2. Calculate the value of direct stress

at the extremity of the lower flange (point A) at a section half-way along the beam if

the position of the shear loads is such that no twisting of the beam occurs.

Ans. 194.7N/mm2 (tension).

800 N

400 N

2000 mm

100 mm

80 mm

40 mm

2.0 mm

2.0 mm

1.0 mm

A

Fig. P.16.2

P.16.3 A beam, simply supported at each end, has a thin-walled cross-section

shown in Fig. P.16.3. If a uniformly distributed loading of intensity w/unit length acts

on the beam in the plane of the lower, horizontal flange, calculate the maximum direct

stress due to bending of the beam and show diagrammatically the distribution of the

stress at the section where the maximum occurs.

The thickness t is to be taken as small in comparison with the other cross-sectional

dimensions in calculating the section properties Ixx, Iyy and Ixy.

Ans. σz,max = σz,3 = 13wl2/384a2t, σz,1 =wl2/96a2t, σz,2 = −wl2/48a2t.
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Fig. P.16.3

P.16.4 A thin-walled cantilever with walls of constant thickness t has the cross-

section shown in Fig. P.16.4. It is loaded by a vertical forceW at the tip and a horizontal

force 2W at the mid-section, both forces acting through the shear centre. Determine

and sketch the distribution of direct stress, according to the basic theory of bending,

along the length of the beam for the points 1 and 2 of the cross-section.

The wall thickness t can be taken as very small in comparison with d in calculating

the sectional properties Ixx, Ixy, etc.

Ans. σz,1 (mid-point)= −0.05Wl/td2, σz,1 (built-in end)= −1.85Wl/td2

σz,2 (mid-point)= −0.63Wl/td2, σz,2 (built-in end)= 0.1Wl/td2.

Fig. P.16.4

P. 16.5 A thin-walled beam has the cross-section shown in Fig. P.16.5. If the

beam is subjected to a bending moment Mx in the plane of the web 23 calculate and

sketch the distribution of direct stress in the beam cross-section.

Ans. At 1, 0.92Mx/th
2; At 2, −0.65Mx/th

2; At 3, 0.65Mx/th
2;

At 4, −0.135Mx/th
2
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h/2

4 3

2t

2t

2h

t

h

2 1

Fig. P.16.5

P.16.6 The thin-walled beam section shown in Fig. P.16.6 is subjected to a bend-

ing moment Mx applied in a negative sense. Find the position of the neutral axis and

the maximum direct stress in the section.

Ans. NA inclined at 40.9◦ to Cx. ±0.74 Mx/ta
2 at 1 and 2, respectively.

a

a
C

x

t

a

60°

1

2

Fig. P.16.6

P.16.7 A thin-walled cantilever has a constant cross-section of uniform thickness

with the dimensions shown in Fig. P.16.7. It is subjected to a system of point loads

acting in the planes of the walls of the section in the directions shown.
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Calculate the direct stresses according to the basic theory of bending at the points 1,

2 and 3 of the cross-section at the built-in end and half-way along the beam. Illustrate

your answer by means of a suitable sketch.

The thickness is to be taken as small in comparison with the other cross-sectional

dimensions in calculating the section properties Ixx, Ixy, etc.

Ans. Atbuilt-in end, σz,1=−11.4N/mm2, σz,2=−18.9N/mm2, σz,3=39.1N/mm2

Half-way, σz,1 = −20.3N/mm2, σz,2 = −1.1N/mm2, σz,3 = 15.4N/mm2.

Fig. P.16.7

P.16.8 A uniform thin-walled beam has the open cross-section shown in Fig.

P.16.8. The wall thickness t is constant. Calculate the position of the neutral axis

and the maximum direct stress for a bending moment Mx = 3.5Nm applied about the

horizontal axis Cx. Take r = 5mm, t = 0.64mm.

Ans. α = 51.9◦, σz,max = 101N/mm2.

Fig. P.16.8

P.16.9 A uniform beam is simply supported over a span of 6m. It carries a

trapezoidally distributed load with intensity varying from 30 kN/m at the left-hand

support to 90 kN/m at the right-hand support. Find the equation of the deflection curve

and hence the deflection at the mid-span point. The second moment of area of the

cross-section of the beam is 120× 106mm4 andYoung’smodulusE = 206 000N/mm2.

Ans. 41mm (downwards).
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P.16.10 A cantilever of length L and having a flexural rigidity EI carries a dis-

tributed load that varies in intensity from w/unit length at the built-in end to zero at the

free end. Find the deflection of the free end.

Ans. wL4/30EI (downwards).

P.16.11 Determine the position andmagnitude of the maximum deflection of the

simply supported beam shown in Fig. P.16.11 in terms of its flexural rigidity EI.

Ans. 38.8/EI m downwards at 2.9m from left-hand support.

6 kN 4 kN

1 kN/m

1 m 1 m2 m 2 m

Fig. P.16.11

P.16.12 Determine the equation of the deflection curve of the beam shown in

Fig. P.16.12. The flexural rigidity of the beam is EI.

Ans. v = −
1

EI

(

125

6
z3 − 50[z − 1]2 +

50

12
[z − 2]4 −

50

12
[z − 4]4 −

525

6
[z − 4]3

+ 237.5z

)

100 N m 100 N/m

A

B

C

D F

200 N

1 m 2 m 3 m1 m

Fig. P.16.12

P.16.13 Auniform thin-walled beamABDof open cross-section (Fig. P.16.13) is

simply supported at points B and D with its web vertical. It carries a downward vertical

force W at the end A in the plane of the web.

Derive expressions for the vertical and horizontal components of the deflection of

the beam midway between the supports B and D. The wall thickness t and Young’s

modulus E are constant throughout.

Ans. u= 0.186Wl3/Ea3t, v = 0.177Wl3/Ea3t.
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Fig. P.16.13

P.16.14 A uniform cantilever of arbitrary cross-section and length l has section

properties Ixx, Iyy and Ixy with respect to the centroidal axes shown in Fig. P.16.14. It

is loaded in the vertical (yz) plane with a uniformly distributed load of intensity w/unit

length. The tip of the beam is hinged to a horizontal link which constrains it to move

in the vertical direction only (provided that the actual deflections are small). Assuming

that the link is rigid, and that there are no twisting effects, calculate:

(a) the force in the link;

(b) the deflection of the tip of the beam.

Ans. (a) 3wlIxy/8Ixx; (b) wl4/8EIxx.

Fig. P.16.14

P.16.15 A uniform beam of arbitrary, unsymmetrical cross-section and length

2l is built-in at one end and simply supported in the vertical direction at a point

half-way along its length. This support, however, allows the beam to deflect freely

in the horizontal x direction (Fig. P.16.15).
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For a vertical load W applied at the free end of the beam, calculate and draw the

bending moment diagram, putting in the principal values.

Ans. MC = 0, MB =Wl, MA = −Wl/2. Linear distribution.

Fig. P.16.15

P.16.16 The beam section of P.16.4 is subjected to a temperature rise of 4T0 in

its upper flange 12, a temperature rise of 2T0 in both vertical webs and a temperature

rise of T0 in its lower flange 34. Determine the changes in axial force and in the bending

moments about the x and y axes. Young’s modulus for the material of the beam is E

and its coefficient of linear expansion is α.

Ans. NT = 9Eα dtT0, MxT = 3Eα d2t T0/2, MyT = 3Eα d2t T0/4.

P.16.17 The beam section shown in Fig. P.16.17 is subjected to a temperature

changewhich varies with y such that T =T0y/2a. Determine the corresponding changes

in the stress resultants. Young’s modulus for the material of the beam is E while its

coefficient of linear expansion is α.

Ans. NT = 0, MxT = 5Eα a2t T0/3, MyT =Eα a2t T0/6.

a

y

2a

t

C x

Fig. P.16.17
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Shear of beams

In Chapter 16 we developed the theory for the bending of beams by considering solid

or thick beam sections and then extended the theory to the thin-walled beam sections

typical of aircraft structural components. In fact it is only in the calculation of section

properties that thin-walled sections subjected to bending are distinguished from solid

and thick sections. However, for thin-walled beams subjected to shear, the theory

is based on assumptions applicable only to thin-walled sections so that we shall not

consider solid and thick sections; the relevant theory for such sections may be found in

any text on structural and stress analysis.1 The relationships between bendingmoments,

shear forces and load intensities derived in Section 16.2.5 still apply.

17.1 General stress, strain and displacement
relationships for open and single cell closed
section thin-walled beams

We shall establish in this section the equations of equilibrium and expressions for strain

which are necessary for the analysis of open section beams supporting shear loads and

closed section beams carrying shear and torsional loads. The analysis of open section

beams subjected to torsion requires a different approach and is discussed separately

in Chapter 18. The relationships are established from first principles for the particular

case of thin-walled sections in preference to the adaption of Eqs (1.6), (1.27) and (1.28)

which refer to different coordinate axes; the form, however, will be seen to be the same.

Generally, in the analysis we assume that axial constraint effects are negligible, that

the shear stresses normal to the beam surface may be neglected since they are zero at

each surface and the wall is thin, that direct and shear stresses on planes normal to the

beam surface are constant across the thickness, and finally that the beam is of uniform

section so that the thickness may vary with distance around each section but is constant

along the beam. In addition, we ignore squares and higher powers of the thickness t in

the calculation of section properties (see Section 16.4.5).

The parameter s in the analysis is distance measured around the cross-section from

some convenient origin.

An element δs× δz× t of the beam wall is maintained in equilibrium by a system of

direct and shear stresses as shown in Fig. 17.1(a). The direct stress σz is produced by

bendingmoments or by the bending action of shear loadswhile the shear stresses are due
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Fig. 17.1 (a) General stress system on element of a closed or open section beam; (b) direct stress and shear flow
system on the element.

to shear and/or torsion of a closed section beam or shear of an open section beam. The

hoop stress σs is usually zero but may be caused, in closed section beams, by internal

pressure. Although we have specified that t may vary with s, this variation is small for

most thin-walled structures so that we may reasonably make the approximation that t

is constant over the length δs. Also, from Eq. (1.4), we deduce that τzs = τsz = τ say.

However, we shall find it convenient to work in terms of shear flow q, i.e. shear force

per unit length rather than in terms of shear stress. Hence, in Fig. 17.1(b)

q = τt (17.1)

and is regarded as being positive in the direction of increasing s.

For equilibrium of the element in the z direction and neglecting body forces (see

Section 1.2)
(

σz +
∂σz

∂z
δz

)

tδs − σztδs +

(

q +
∂q

∂s
δs

)

δz − qδz = 0

which reduces to

∂q

∂s
+ t

∂σz

∂z
= 0 (17.2)

Similarly for equilibrium in the s direction

∂q

∂z
+ t

∂σs

∂s
= 0 (17.3)

The direct stresses σz and σs produce direct strains εz and εs, while the shear stress

τ induces a shear strain γ(=γzs = γsz). We shall now proceed to express these strains

in terms of the three components of the displacement of a point in the section wall (see

Fig. 17.2). Of these components vt is a tangential displacement in the xy plane and is

taken to be positive in the direction of increasing s; vn is a normal displacement in the xy

plane and is positive outwards; and w is an axial displacement which has been defined

previously in Section 16.2.1. Immediately, from the third of Eqs (1.18), we have

εz =
∂w

∂z
(17.4)
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Fig. 17.2 Axial, tangential and normal components of displacement of a point in the beam wall.

Fig. 17.3 Determination of shear strain γ in terms of tangential and axial components of displacement.

It is possible to derive a simple expression for the direct strain εs in terms of vt, vn, s

and the curvature 1/r in the xy plane of the beam wall. However, as we do not require

εs in the subsequent analysis we shall, for brevity, merely quote the expression

εs =
∂vt

∂s
+

vn

r
(17.5)

The shear strain γ is found in terms of the displacements w and vt by considering the

shear distortion of an element δs× δz of the beam wall. From Fig. 17.3 we see that the

shear strain is given by

γ = φ1 + φ2

or, in the limit as both δs and δz tend to zero

γ =
∂w

∂s
+

∂vt

∂z
(17.6)

In addition to the assumptions specified in the earlier part of this section, we further

assume that during any displacement the shape of the beam cross-section is maintained



506 Shear of beams

by a system of closely spaced diaphragms which are rigid in their own plane but are

perfectly flexible normal to their own plane (CSRD assumption). There is, therefore,

no resistance to axial displacement w and the cross-section moves as a rigid body in its

own plane, the displacement of any point being completely specified by translations u

and v and a rotation θ (see Fig. 17.4).

At first sight this appears to be a rather sweeping assumption but, for aircraft structures

of the thin shell type described in Chapter 12 whose cross-sections are stiffened by

ribs or frames positioned at frequent intervals along their lengths, it is a reasonable

approximation for the actual behaviour of such sections. The tangential displacement

vt of any point N in the wall of either an open or closed section beam is seen from Fig.

17.4 to be

vt = pθ + u cosψ + v sinψ (17.7)

where clearly u, v and θ are functions of z only (w may be a function of z and s).

The origin O of the axes in Fig. 17.4 has been chosen arbitrarily and the axes suffer

displacements u, v and θ. These displacements, in a loading case such as pure torsion,

are equivalent to a pure rotation about some point R(xR,yR) in the cross-section where

R is the centre of twist. Therefore, in Fig. 17.4

vt = pRθ (17.8)

and

pR = p − xR sinψ + yR cosψ

which gives

vt = pθ − xRθ sinψ + yRθ cosψ

Fig. 17.4 Establishment of displacement relationships and position of centre of twist of beam (open or closed).
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and

∂vt

∂z
= p

dθ

dz
− xR sinψ

dθ

dz
+ yR cosψ

dθ

dz
(17.9)

Also from Eq. (17.7)

∂vt

∂z
= p

dθ

dz
+

du

dz
cosψ +

dv

dz
sinψ (17.10)

Comparing the coefficients of Eqs (17.9) and (17.10) we see that

xR = −
dv/dz

dθ/dz
yR =

du/dz

dθ/dz
(17.11)

17.2 Shear of open section beams

The open section beam of arbitrary section shown in Fig. 17.5 supports shear loads Sx
and Sy such that there is no twisting of the beam cross-section. For this condition to

be valid the shear loads must both pass through a particular point in the cross-section

known as the shear centre.

Since there are no hoop stresses in the beam the shear flows and direct stresses acting

on an element of the beam wall are related by Eq. (17.2), i.e.

∂q

∂s
+ t

∂σz

∂z
= 0

We assume that the direct stresses are obtained with sufficient accuracy from basic

bending theory so that from Eq. (16.18)

∂σz

∂z
=

[(∂My/∂z)Ixx − (∂Mx/∂z)Ixy]

IxxIyy − I2xy
x +

[(∂Mx/∂z)Iyy − (∂My/∂z)Ixy]

IxxIyy − I2xy
y

Fig. 17.5 Shear loading of open section beam.
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Using the relationships of Eqs (16.23) and (16.24), i.e. ∂My/∂z= Sx, etc., this

expression becomes

∂σz

∂z
=

(SxIxx − SyIxy)

IxxIyy − I2xy
x +

(SyIyy − SxIxy)

IxxIyy − I2xy
y

Substituting for ∂σz/∂z in Eq. (17.2) gives

∂q

∂s
= −

(SxIxx − SyIxy)

IxxIyy − I2xy
tx −

(SyIyy − SxIxy)

IxxIyy − I2xy
ty (17.12)

Integrating Eq. (17.12) with respect to s from some origin for s to any point around the

cross-section, we obtain

∫ s

0

∂q

∂s
ds = −

(

SxIxx − SyIxy

IxxIyy − I2xy

)

∫ s

0

tx ds −

(

SyIyy − SxIxy

IxxIyy − I2xy

)

∫ s

0

ty ds (17.13)

If the origin for s is taken at the open edge of the cross-section, then q= 0 when s= 0

and Eq. (17.13) becomes

qs = −

(

SxIxx − SyIxy

IxxIyy − I2xy

)

∫ s

0

tx ds −

(

SyIyy − SxIxy

IxxIyy − I2xy

)

∫ s

0

ty ds (17.14)

For a section having either Cx or Cy as an axis of symmetry Ixy = 0 and Eq. (17.14)

reduces to

qs = −
Sx

Iyy

∫ s

0

tx ds −
Sy

Ixx

∫ s

0

ty ds

Example 17.1
Determine the shear flow distribution in the thin-walled Z-section shown in Fig. 17.6

due to a shear load Sy applied through the shear centre of the section.

The origin for our system of reference axes coincides with the centroid of the section

at the mid-point of the web. From antisymmetry we also deduce by inspection that the

shear centre occupies the same position. Since Sy is applied through the shear centre

then no torsion exists and the shear flow distribution is given by Eq. (17.14) in which

Sx = 0, i.e.

qs =
SyIxy

IxxIyy − I2xy

∫ s

0

tx ds −
SyIyy

IxxIyy − I2xy

∫ s

0

ty ds

or

qs =
Sy

IxxIyy − I2xy

(

Ixy

∫ s

0

tx ds − Iyy

∫ s

0

ty ds

)

(i)
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Fig. 17.6 Shear loaded Z-section of Example 17.1.

The secondmoments of area of the section have previously been determined in Example

16.14 and are

Ixx =
h3t

3
, Iyy =

h3t

12
, Ixy =

h3t

8

Substituting these values in Eq. (i) we obtain

qs =
Sy

h3

∫ s

0

(10.32x − 6.84y)ds (ii)

On the bottom flange 12, y= −h/2 and x= −h/2+ s1, where 0≤ s1 ≤ h/2. Therefore

q12 =
Sy

h3

∫ s1

0

(10.32s1 − 1.74h)ds1

giving

q12 =
Sy

h3
(5.16s21 − 1.74hs1) (iii)

Hence at 1 (s1 = 0), q1 = 0 and at 2 (s1 = h/2), q2 = 0.42Sy/h. Further examination of

Eq. (iii) shows that the shear flow distribution on the bottom flange is parabolic with a

change of sign (i.e. direction) at s1 = 0.336h. For values of s1 < 0.336h, q12 is negative

and therefore in the opposite direction to s1.

In the web 23, y= −h/2+ s2, where 0≤ s2 ≤ h and x= 0. Then

q23 =
Sy

h3

∫ s2

0

(3.42h − 6.84s2)ds2 + q2 (iv)
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Fig. 17.7 Shear flow distribution in Z-section of Example 17.1.

We note in Eq. (iv) that the shear flow is not zero when s2 = 0 but equal to the value

obtained by inserting s1 = h/2 in Eq. (iii), i.e. q2 = 0.42Sy/h. Integration of Eq. (iv)

yields

q23 =
Sy

h3
(0.42h2 + 3.42hs2 − 3.42s22) (v)

This distribution is symmetrical about Cx with a maximum value at s2 = h/2(y= 0)

and the shear flow is positive at all points in the web.

The shear flow distribution in the upper flange may be deduced from antisymmetry

so that the complete distribution is of the form shown in Fig. 17.7.

17.2.1 Shear centre

Wehave defined the position of the shear centre as that point in the cross-section through

which shear loads produce no twisting. Itmay be shown by use of the reciprocal theorem

that this point is also the centre of twist of sections subjected to torsion. There are,

however, some important exceptions to this general rule as we shall observe in Section

26.1. Clearly, in the majority of practical cases it is impossible to guarantee that a shear

load will act through the shear centre of a section. Equally apparent is the fact that any

shear load may be represented by the combination of the shear load applied through

the shear centre and a torque. The stresses produced by the separate actions of torsion

and shear may then be added by superposition. It is therefore necessary to know the

location of the shear centre in all types of section or to calculate its position. Where

a cross-section has an axis of symmetry the shear centre must, of course, lie on this

axis. For cruciform or angle sections of the type shown in Fig. 17.8 the shear centre is

located at the intersection of the sides since the resultant internal shear loads all pass

through these points.
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Fig. 17.8 Shear centre position for type of open section beam shown.

Example 17.2
Calculate the position of the shear centre of the thin-walled channel section shown in

Fig. 17.9. The thickness t of the walls is constant.

The shear centre S lies on the horizontal axis of symmetry at some distance ξS, say,

from the web. If we apply an arbitrary shear load Sy through the shear centre then the

shear flow distribution is given by Eq. (17.14) and the moment about any point in the

cross-section produced by these shear flows is equivalent to the moment of the applied

shear load. Sy appears on both sides of the resulting equation and may therefore be

eliminated to leave ξS.

For the channel section, Cx is an axis of symmetry so that Ixy = 0. Also Sx = 0 and

therefore Eq. (17.14) simplifies to

qs = −
Sy

Ixx

∫ s

0

ty ds (i)

where

Ixx = 2bt

(

h

2

)2

+
th3

12
=

h3t

12

(

1 +
6b

h

)

Fig. 17.9 Determination of shear centre position of channel section of Example 17.2.
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Substituting for Ixx in Eq. (i) we have

qs =
−12Sy

h3(1 + 6b/h)

∫ s

0

y ds (ii)

The amount of computation involved may be reduced by giving some thought to the

requirements of the problem. In this case we are asked to find the position of the shear

centre only, not a complete shear flow distribution. From symmetry it is clear that the

moments of the resultant shears on the top and bottom flanges about the mid-point

of the web are numerically equal and act in the same rotational sense. Furthermore,

the moment of the web shear about the same point is zero. We deduce that it is only

necessary to obtain the shear flow distribution on either the top or bottom flange for a

solution. Alternatively, choosing a web/flange junction as a moment centre leads to the

same conclusion.

On the bottom flange, y= −h/2 so that from Eq. (ii) we have

q12 =
6Sy

h2(1 + 6b/h)
s1 (iii)

Equating the clockwise moments of the internal shears about the mid-point of the web

to the clockwise moment of the applied shear load about the same point gives

Syξs = 2

∫ b

0

q12
h

2
ds1

or, by substitution from Eq. (iii)

Syξs = 2

∫ b

0

6Sy

h2(1 + 6b/h)

h

2
s1ds1

from which

ξs =
3b2

h(1 + 6b/h)
(iv)

In the case of an unsymmetrical section, the coordinates (ξS, ηS) of the shear centre

referred to some convenient point in the cross-section would be obtained by first deter-

mining ξS in a similar manner to that of Example 17.2 and then finding ηS by applying a

shear load Sx through the shear centre. In both cases the choice of a web/flange junction

as a moment centre reduces the amount of computation.

17.3 Shear of closed section beams

The solution for a shear loaded closed section beam follows a similar pattern to that

described in Section 17.2 for an open section beam but with two important differences.

First, the shear loads may be applied through points in the cross-section other than

the shear centre so that torsional as well as shear effects are included. This is possible

since, as we shall see, shear stresses produced by torsion in closed section beams have

exactly the same form as shear stresses produced by shear, unlike shear stresses due to
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Fig. 17.10 Shear of closed section beams.

shear and torsion in open section beams. Secondly, it is generally not possible to choose

an origin for s at which the value of shear flow is known. Consider the closed section

beam of arbitrary section shown in Fig. 17.10. The shear loads Sx and Sy are applied

through any point in the cross-section and, in general, cause direct bending stresses

and shear flows which are related by the equilibrium equation (17.2). We assume that

hoop stresses and body forces are absent. Therefore

∂q

∂s
+ t

∂σz

∂z
= 0

From this point the analysis is identical to that for a shear loaded open section beam

until we reach the stage of integrating Eq. (17.13), namely

∫ s

0

∂q

∂s
ds = −

(

SxIxx − SyIxy

IxxIyy − I2xy

)

∫ s

0

tx ds −

(

SyIyy − SxIxy

IxxIyy − I2xy

)

∫ s

0

ty ds

Let us suppose that we choose an origin for s where the shear flow has the unknown

value qs,0. Integration of Eq. (17.13) then gives

qs − qs,0 = −

(

SxIxx − SyIxy

IxxIyy − I2xy

)

∫ s

0

tx ds −

(

SyIyy − SxIxy

IxxIyy − I2xy

)

∫ s

0

ty ds

or

qs = −

(

SxIxx − SyIxy

IxxIyy − I2xy

)

∫ s

0

tx ds −

(

SyIyy − SxIxy

IxxIyy − I2xy

)

∫ s

0

ty ds + qs,0 (17.15)

We observe by comparison of Eqs (17.15) and (17.14) that the first two terms on the

right-hand side of Eq. (17.15) represent the shear flow distribution in an open section

beam loaded through its shear centre. This fact indicates a method of solution for a

shear loaded closed section beam. Representing this ‘open’ section or ‘basic’ shear

flow by qb, we may write Eq. (17.15) in the form

qs = qb + qs,0 (17.16)
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Fig. 17.11 (a) Determination of qs,0; (b) equivalent loading on ‘open’ section beam.

Weobtain qb by supposing that the closed beam section is ‘cut’at some convenient point

thereby producing an ‘open’section (see Fig. 17.11(b)). The shear flow distribution (qb)

around this ‘open’ section is given by

qb = −

(

SxIxx − SyIxy

IxxIyy − I2xy

)

∫ s

0

tx ds −

(

SyIyy − SxIxy

IxxIxy − I2xy

)

∫ s

0

ty ds

as in Section 17.2. The value of shear flow at the cut (s = 0) is then found by equating

applied and internal moments taken about some convenient moment centre. Then, from

Fig. 17.11(a)

Sxη0 − Syξ0 =

∮

pq ds =

∮

pqb ds + qs,0

∮

p ds

where
∮

denotes integration completely around the cross-section. In Fig. 17.11 (a)

δA =
1

2
δsp

so that
∮

dA =
1

2

∮

p ds

Hence
∮

pds = 2A

where A is the area enclosed by the mid-line of the beam section wall. Hence

Sxη0 − Syξ0 =

∮

pqbds + 2Aqs,0 (17.17)
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If the moment centre is chosen to coincide with the lines of action of Sx and Sy then

Eq. (17.17) reduces to

0 =

∮

pqb ds + 2Aqs,0 (17.18)

The unknown shear flow qs,0 follows from either of Eqs (17.17) or (17.18).

It is worthwhile to consider some of the implications of the above process. Equation

(17.14) represents the shearflowdistribution in anopen sectionbeamfor the conditionof

zero twist. Therefore, by ‘cutting’ the closed section beam of Fig. 17.11(a) to determine

qb, we are, in effect, replacing the shear loads of Fig. 17.11(a) by shear loads Sx and

Sy acting through the shear centre of the resulting ‘open’ section beam together with a

torque T as shown in Fig. 17.11(b). We shall show in Section 18.1 that the application

of a torque to a closed section beam results in a constant shear flow. In this case the

constant shear flow qs,0 corresponds to the torque but will have different values for

different positions of the ‘cut’ since the corresponding various ‘open’ section beams

will have different locations for their shear centres. An additional effect of ‘cutting’

the beam is to produce a statically determinate structure since the qb shear flows are

obtained from statical equilibrium considerations. It follows that a single cell closed

section beam supporting shear loads is singly redundant.

17.3.1 Twist and warping of shear loaded closed
section beams

Shear loads which are not applied through the shear centre of a closed section beam

cause cross-sections to twist and warp; i.e., in addition to rotation, they suffer out of

plane axial displacements. Expressions for these quantities may be derived in terms of

the shear flow distribution qs as follows. Since q= τt and τ =Gγ (see Chapter 1) then

we can express qs in terms of the warping and tangential displacements w and vt of a

point in the beam wall by using Eq. (17.6). Thus

qs = Gt

(

∂w

∂s
+

∂vt

∂z

)

(17.19)

Substituting for ∂vt/∂z from Eq. (17.10) we have

qs

Gt
=

∂w

∂s
+ p

dθ

dz
+

du

dz
cosψ +

dv

dz
sinψ (17.20)

Integrating Eq. (17.20) with respect to s from the chosen origin for s and noting that G

may also be a function of s, we obtain

∫ s

0

qs

Gt
ds =

∫ s

0

∂w

∂s
ds +

dθ

dz

∫ s

0

p ds +
du

dz

∫ s

0

cosψ ds +
dv

dz

∫ s

0

sinψ ds

or
∫ s

0

qs

Gt
ds =

∫ s

0

∂w

∂s
ds +

dθ

dz

∫ s

0

p ds +
du

dz

∫ s

0

dx +
dv

dz

∫ s

0

dy
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which gives

∫ s

0

qs

Gt
ds = (ws − w0) + 2AOs

dθ

dz
+

du

dz
(xs − x0) +

dv

dz
(ys − y0) (17.21)

where AOs is the area swept out by a generator, centre at the origin of axes, O, from

the origin for s to any point s around the cross-section. Continuing the integration

completely around the cross-section yields, from Eq. (17.21)
∮

qs

Gt
ds = 2A

dθ

dz

from which

dθ

dz
=

1

2A

∮

qs

Gt
ds (17.22)

Substituting for the rate of twist in Eq. (17.21) from Eq. (17.22) and rearranging, we

obtain the warping distribution around the cross-section

ws − w0 =

∫ s

0

qs

Gt
ds −

AOs

A

∮

qs

Gt
ds −

du

dz
(xs − x0) −

dv

dz
(ys − y0) (17.23)

Using Eqs (17.11) to replace du/dz and dv/dz in Eq. (17.23) we have

ws − w0 =

∫ s

0

qs

Gt
ds −

AOs

A

∮

qs

Gt
ds − yR

dθ

dz
(xs − x0) + xR

dθ

dz
(ys − y0) (17.24)

The last two terms in Eq. (17.24) represent the effect of relating the warping displace-

ment to an arbitrary origin which itself suffers axial displacement due to warping. In the

case where the origin coincides with the centre of twist R of the section then Eq. (17.24)

simplifies to

ws − w0 =

∫ s

0

qs

Gt
ds −

AOs

A

∮

qs

Gt
ds (17.25)

In problems involving singly or doubly symmetrical sections, the origin for s may

be taken to coincide with a point of zero warping which will occur where an axis of

symmetry and the wall of the section intersect. For unsymmetrical sections the origin

for s may be chosen arbitrarily. The resulting warping distribution will have exactly

the same form as the actual distribution but will be displaced axially by the unknown

warping displacement at the origin for s. This value may be found by referring to the

torsion of closed section beams subject to axial constraint (see Section 26.3). In the

analysis of such beams it is assumed that the direct stress distribution set up by

the constraint is directly proportional to the free warping of the section, i.e.

σ = constant × w

Also, since a pure torque is applied the resultant of any internal direct stress system

must be zero, in other words it is self-equilibrating. Thus

Resultant axial load =

∮

σt ds
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where σ is the direct stress at any point in the cross-section. Then, from the above

assumption

0 =

∮

wt ds

or

0 =

∮

(ws − w0)t ds

so that

w0 =

∮

wst ds
∮

t ds
(17.26)

17.3.2 Shear centre

The shear centre of a closed section beam is located in a similarmanner to that described

in Section 17.2.1 for open section beams. Therefore, to determine the coordinate ξS
(referred to any convenient point in the cross-section) of the shear centre S of the

closed section beam shown in Fig. 17.12, we apply an arbitrary shear load Sy through

S, calculate the distribution of shear flow qs due to Sy and then equate internal and

external moments. However, a difficulty arises in obtaining qs,0 since, at this stage, it

is impossible to equate internal and external moments to produce an equation similar

to Eq. (17.17) as the position of Sy is unknown. We therefore use the condition that a

shear load acting through the shear centre of a section produces zero twist. It follows

that dθ/dz in Eq. (17.22) is zero so that

0 =

∮

qs

Gt
ds

or

0 =

∮

1

Gt
(qb + qs,0)ds

Fig. 17.12 Shear centre of a closed section beam.
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which gives

qs,0 = −

∮

(qb/Gt)ds
∮

ds/Gt
(17.27)

If Gt = constant then Eq. (17.27) simplifies to

qs,0 = −

∮

qb ds
∮

ds
(17.28)

The coordinate ηS is found in a similar manner by applying Sx through S.

Example 17.3
A thin-walled closed section beam has the singly symmetrical cross-section shown in

Fig. 17.13. Each wall of the section is flat and has the same thickness t and shear

modulus G. Calculate the distance of the shear centre from point 4.

The shear centre clearly lies on the horizontal axis of symmetry so that it is only

necessary to apply a shear load Sy through S and to determine ξS. If we take the x

reference axis to coincide with the axis of symmetry then Ixy = 0, and since Sx = 0

Eq. (17.15) simplifies to

qs = −
Sy

Ixx

∫ s

0

ty ds + qs,0 (i)

in which

Ixx = 2

[

∫ 10a

0

t

(

8

10
s1

)2

ds1 +

∫ 17a

0

t

(

8

17
s2

)2

ds2

]

Evaluating this expression gives Ixx = 1152a3t.

Fig. 17.13 Closed section beam of Example 17.3.
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The basic shear flow distribution qb is obtained from the first term in Eq. (i). Then,

for the wall 41

qb,41 =
−Sy

1152a3t

∫ s1

0

t

(

8

10
s1

)

ds1 =
−Sy

1152a3

(

2

5
s21

)

(ii)

In the wall 12

qb,12 =
−Sy

1152a3

[∫ s2

0

(17a − s2)
8

17
ds2 + 40a2

]

(ii)

which gives

qb,12 =
−Sy

1152a3

(

−
4

17
s22 + 8as2 + 40a2

)

(iii)

The qb distributions in the walls 23 and 34 follow from symmetry. Hence from

Eq. (17.28)

qs,0 =
2Sy

54a × 1152a3

[∫ 10a

0

2

5
s21 ds1 +

∫ 17a

0

(

−
4

17
s22 + 8as2 + 40a2

)

ds2

]

giving

qs,0 =
Sy

1152a3
(58.7a2) (iv)

Taking moments about the point 2 we have

Sy(ξS + 9a) = 2

∫ 10a

0

q4117a sin θ ds1

or

Sy(ξS + 9a) =
Sy34a sin θ

1152a3

∫ 10a

0

(

−
2

5
s21 + 58.7a2

)

ds1 (v)

We may replace sin θ by sin(θ1 − θ2)= sin θ1 cos θ2 − cos θ1 sin θ2 where sin θ1 =,

15/17, cos θ2 = 8/10, cos θ1 = 8/17 and sin θ2 = 6/10. Substituting these values and

integrating Eq. (v) gives

ξS = −3.35a

which means that the shear centre is inside the beam section.

Reference

1 Megson, T. H. G., Structural and Stress Analysis, 2nd edition, Elsevier, Oxford, 2005.
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Problems

P.17.1 A beam has the singly symmetrical, thin-walled cross-section shown in

Fig. P.17.1. The thickness t of the walls is constant throughout. Show that the distance

of the shear centre from the web is given by

ξS = −d
ρ2 sin α cosα

1 + 6ρ + 2ρ3 sin2 α

where

ρ = d/h

Fig. P.17.1

P.17.2 A beam has the singly symmetrical, thin-walled cross-section shown in

Fig. P.17.2. Each wall of the section is flat and has the same length a and thickness t.

Calculate the distance of the shear centre from the point 3.

Ans. 5a cos α/8

Fig. P.17.2
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P.17.3 Determine the position of the shear centre S for the thin-walled, open cross-

section shown in Fig. P.17.3. The thickness t is constant.

Ans. πr/3

Fig. P.17.3

P.17.4 Figure P.17.4 shows the cross-section of a thin, singly symmetrical I-section.

Show that the distance ξS of the shear centre from the vertical web is given by

ξS

d
=

3ρ(1 − β)

(1 + 12ρ)

where ρ = d/h. The thickness t is taken to be negligibly small in comparison with the

other dimensions.

Fig. P.17.4

P.17.5 A thin-walled beamhas the cross-section shown in Fig. P.17.5. The thickness

of each flange varies linearly from t1 at the tip to t2 at the junction with the web. The
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web itself has a constant thickness t3. Calculate the distance ξS from the web to the

shear centre S.

Ans. d2(2t1 + t2)/[3d(t1 + t2) + ht3].

Fig. P.17.5

P.17.6 Figure P.17.6 shows the singly symmetrical cross-section of a thin-walled

open section beam of constant wall thickness t, which has a narrow longitudinal slit at

the corner 15.

Calculate and sketch the distribution of shear flow due to a vertical shear force Sy
acting through the shear centre S and note the principal values. Show also that the

distance ξS of the shear centre from the nose of the section is ξS = l/2(1+ a/b).

Ans. q2 = q4 = 3bSy/2h(b+ a), q3 = 3Sy/2h. Parabolic distributions.

Fig. P.17.6

P.17.7 Show that the position of the shear centre S with respect to the intersection

of the web and lower flange of the thin-walled section shown in Fig. P.17.7, is given by

ξS = −45a/97, ηS = 46a/97
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Fig. P.17.7

P.17.8 Define the term ‘shear centre’ of a thin-walled open section and determine

the position of the shear centre of the thin-walled open section shown in Fig. P.17.8.

Ans. 2.66r from centre of semicircular wall.

2r

t

r

2r

Narrow slit

Fig. P.17.8

P.17.9 Determine the position of the shear centre of the cold-formed, thin-walled

section shown in Fig. P.17.9. The thickness of the section is constant throughout.

Ans. 87.5mm above centre of semicircular wall.

25 mm 25 mm

50 mm

100 mm

50
m

m

Fig. P.17.9
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P.17.10 Find the position of the shear centre of the thin-walled beam section shown

in Fig. P.17.10.

Ans. 1.2r on axis of symmetry to the left of the section.

45o

r

t

r

45o

Fig. P.17.10

P.17.11 Calculate the position of the shear centre of the thin-walled section shown

in Fig. P.17.11.

Ans. 20.2mm to the left of the vertical web on axis of symmetry.

1

2

3

4

5

6

2 mm

2 mm

2 mm 30 mm

15 mm

25 mm

60 mm

Fig. P.17.11



Problems 525

P.17.12 A thin-walled closed section beam of constant wall thickness t has the

cross-section shown in Fig. P.17.12.

Assuming that the direct stresses are distributed according to the basic theory of

bending, calculate and sketch the shear flow distribution for a vertical shear force Sy
applied tangentially to the curved part of the beam.

Ans. qO1 = Sy(1.61 cos θ − 0.80)/r

q12 =
Sy

r3
(0.57s2 − 1.14rs + 0.33r2).

Fig. P.17.12

P.17.13 Auniform thin-walled beamof constantwall thickness t has a cross-section

in the shape of an isosceles triangle and is loaded with a vertical shear force Sy applied

at the apex. Assuming that the distribution of shear stress is according to the basic

theory of bending, calculate the distribution of shear flow over the cross-section.

Illustrate your answer with a suitable sketch, marking in carefully with arrows the

direction of the shear flows and noting the principal values.

Ans. q12 = Sy(3s
2
1/d − h− 3d)/h(h+ 2d)

q23 = Sy(−6s22 + 6hs2 − h2)/h2(h + 2d)

Fig. P.17.13
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P.17.14 Figure P.17.14 shows the regular hexagonal cross-section of a thin-walled

beam of sides a and constant wall thickness t. The beam is subjected to a transverse

shear force S, its line of action being along a side of the hexagon, as shown.

Plot the shear flow distribution around the section, with values in terms of S and a.

Ans. q1 = −0.52S/a, q2 = q8 = −0.47S/a, q3 = q7 = −0.17S/a,

q4 = q6 = 0.13S/a, q5 = 0.18S/a

Parabolic distributions, q positive clockwise.

Fig. P.17.14

P.17.15 A box girder has the singly symmetrical trapezoidal cross-section shown

in Fig. P.17.15. It supports a vertical shear load of 500 kN applied through its shear

centre and in a direction perpendicular to its parallel sides. Calculate the shear flow

distribution and the maximum shear stress in the section.

Ans. qOA = 0.25sA

qAB = 0.21sB − 2.14 × 10−4s2B + 250

qBC = −0.17sC + 246

τmax = 30.2N/mm2

1 m

2 m

D B
C

E O sA

sC

sB

A

120°120°

10 mm
10 mm

500 kN

12 mm

8 mm

Fig. P.17.15
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Torsion of beams

In Chapter 3 we developed the theory for the torsion of solid sections using both the

Prandtl stress function approach and the St. Venant warping function solution. From

that point we looked, via the membrane analogy, at the torsion of a narrow rectangular

strip. We shall use the results of this analysis to investigate the torsion of thin-walled

open section beams but first we shall examine the torsion of thin-walled closed section

beams since the theory for this relies on the general stress, strain and displacement

relationships which we established in Chapter 17.

18.1 Torsion of closed section beams

A closed section beam subjected to a pure torque T as shown in Fig. 18.1 does not, in

the absence of an axial constraint, develop a direct stress system. It follows that the

equilibrium conditions of Eqs (17.2) and (17.3) reduce to ∂q/∂s= 0 and ∂q/∂z= 0,

respectively. These relationships may only be satisfied simultaneously by a constant

value of q.We deduce, therefore, that the application of a pure torque to a closed section

beam results in the development of a constant shear flow in the beam wall. However,

the shear stress τ may vary around the cross-section since we allow the wall thickness

t to be a function of s. The relationship between the applied torque and this constant

shear flow is simply derived by considering the torsional equilibrium of the section

shown in Fig. 18.2. The torque produced by the shear flow acting on an element δs of

Fig. 18.1 Torsion of a closed section beam.



528 Torsion of beams

Fig. 18.2 Determination of the shear flow distribution in a closed section beam subjected to torsion.

the beam wall is pqδs. Hence

T =

∮

pq ds

or, since q is constant and
∮

p ds= 2A (see Section 17.3)

T = 2Aq (18.1)

Note that the origin O of the axes in Fig. 18.2 may be positioned in or outside the

cross-section of the beam since the moment of the internal shear flows (whose resultant

is a pure torque) is the same about any point in their plane. For an origin outside the

cross-section the term
∮

p dswill involve the summation of positive and negative areas.

The sign of an area is determined by the sign of p which itself is associated with the

sign convention for torque as follows. If the movement of the foot of p along the tangent

at any point in the positive direction of s leads to an anticlockwise rotation of p about

the origin of axes, p is positive. The positive direction of s is in the positive direction

of q which is anticlockwise (corresponding to a positive torque). Thus, in Fig. 18.3

a generator OA, rotating about O, will initially sweep out a negative area since pA is

negative. At B, however, pB is positive so that the area swept out by the generator has

changed sign (at the point where the tangent passes through O and p= 0). Positive and

negative areas cancel each other out as they overlap so that as the generator moves

completely around the section, starting and returning toA say, the resultant area is that

enclosed by the profile of the beam.

The theory of the torsion of closed section beams is known as the Bredt–Batho theory

and Eq. (18.1) is often referred to as the Bredt–Batho formula.

18.1.1 Displacements associated with the Bredt–Batho
shear flow

The relationship between q and shear strain γ established in Eq. (17.19), namely

q = Gt

(

∂w

∂s
+

∂vt

∂z

)
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Fig. 18.3 Sign convention for swept areas.

is valid for the pure torsion case where q is constant. Differentiating this expression

with respect to z we have

∂q

∂z
= Gt

(

∂2w

∂z ∂s
+

∂2vt

∂z2

)

= 0

or

∂

∂s

(

∂w

∂z

)

+
∂2vt

∂z2
= 0 (18.2)

In the absence of direct stresses the longitudinal strain ∂w/∂z(= εz) is zero so that

∂2vt

∂z2
= 0

Hence from Eq. (17.7)

p
d2θ

dz2
+

d2u

dz2
cosψ +

d2v

dz2
sinψ = 0 (18.3)

For Eq. (18.3) to hold for all points around the section wall, in other words for all values

of ψ

d2θ

dz2
= 0,

d2u

dz2
= 0,

d2v

dz2
= 0

It follows that θ =Az+B, u=Cz+D, v =Ez+F, where A, B, C, D, E and F are

unknown constants. Thus θ, u and v are all linear functions of z.

Equation (17.22), relating the rate of twist to the variable shear flow qs developed in

a shear loaded closed section beam, is also valid for the case qs = q= constant. Hence

dθ

dz
=

q

2A

∮

ds

Gt
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which becomes, on substituting for q from Eq. (18.1)

dθ

dz
=

T

4A2

∮

ds

Gt
(18.4)

The warping distribution produced by a varying shear flow, as defined by Eq. (17.25)

for axes having their origin at the centre of twist, is also applicable to the case of a

constant shear flow. Thus

ws − w0 = q

∫ s

0

ds

Gt
−

AOs

A
q

∮

ds

Gt

Replacing q from Eq. (18.1) we have

ws − w0 =
Tδ

2A

(

δOs

δ
−

AOs

A

)

(18.5)

where

δ =

∮

ds

Gt
and δOs =

∫ s

0

ds

Gt

The sign of the warping displacement in Eq. (18.5) is governed by the sign of the

applied torque T and the signs of the parameters δOs and AOs. Having specified initially

that a positive torque is anticlockwise, the signs of δOs and AOs are fixed in that δOs is

positive when s is positive, i.e. s is taken as positive in an anticlockwise sense, and AOs

is positive when, as before, p (see Fig. 18.3) is positive.

We have noted that the longitudinal strain εz is zero in a closed section beam subjected

to a pure torque. This means that all sections of the beam must possess identical warp-

ing distributions. In other words longitudinal generators of the beam surface remain

unchanged in length although subjected to axial displacement.

Example 18.1
A thin-walled circular section beam has a diameter of 200mm and is 2m long; it is

firmly restrained against rotation at each end. A concentrated torque of 30 kNm is

applied to the beam at its mid-span point. If the maximum shear stress in the beam is

limited to 200N/mm2 and the maximum angle of twist to 2◦, calculate the minimum

thickness of the beam walls. Take G= 25 000N/mm2.

The minimum thickness of the beam corresponding to the maximum allowable shear

stress of 200N/mm2 is obtained directly using Eq. (18.1) in which Tmax = 15 kNm.

Then

tmin =
15 × 106 × 4

2 × π × 2002 × 200
= 1.2mm

The rate of twist along the beam is given by Eq. (18.4) in which

∮

ds

t
=

π × 200

tmin



18.1 Torsion of closed section beams 531

Hence

dθ

dz
=

T

4A2G
×

π × 200

tmin
(i)

Taking the origin for z at one of the fixed ends and integrating Eq. (i) for half the length

of the beam we obtain

θ =
T

4A2G
×

200π

tmin
z + C1

whereC1 is a constant of integration.At the fixed end where z= 0, θ = 0 so thatC1 = 0.

Hence

θ =
T

4A2G
×

200π

tmin
z

The maximum angle of twist occurs at the mid-span of the beam where z= 1m. Hence

tmin =
15 × 106 × 200 × π × 1 × 103 × 180

4 × (π × 2002/4)2 × 25 000 × 2 × π
= 2.7mm

The minimum allowable thickness that satisfies both conditions is therefore 2.7mm.

Example 18.2
Determine the warping distribution in the doubly symmetrical rectangular, closed

section beam, shown in Fig. 18.4, when subjected to an anticlockwise torque T .

From symmetry the centre of twist R will coincide with the mid-point of the cross-

section and points of zero warping will lie on the axes of symmetry at the mid-points

of the sides. We shall therefore take the origin for s at the mid-point of side 14 and

measure s in the positive, anticlockwise, sense around the section. Assuming the shear

modulus G to be constant we rewrite Eq. (18.5) in the form

ws − w0 =
Tδ

2AG

(

δOs

δ
−

AOs

A

)

(i)

Fig. 18.4 Torsion of a rectangular section beam.
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where

δ =

∮

ds

t
and δOs =

∫ s

0

ds

t

In Eq. (i)

w0 = 0, δ = 2

(

b

tb
+

a

ta

)

and A = ab

From 0 to 1, 0 ≤ s1 ≤ b/2 and

δOs =
∫ s1

0

ds1

tb
=

s1

tb
AOs =

as1

4
(ii)

Note that δOs and AOs are both positive.

Substitution for δOs and AOs from Eq. (ii) in (i) shows that the warping distribution

in the wall 01, w01, is linear. Also

w1 =
T

2abG
2

(

b

tb
+

a

ta

) [

b/2tb

2(b/tb + a/ta)
−

ab/8

ab

]

which gives

w1 =
T

8abG

(

b

tb
−

a

ta

)

(iii)

The remainder of the warping distribution may be deduced from symmetry and the fact

that the warping must be zero at points where the axes of symmetry and the walls of

the cross-section intersect. It follows that

w2 = −w1 = −w3 = w4

giving the distribution shown in Fig. 18.5. Note that the warping distribution will take

the form shown in Fig. 18.5 as long as T is positive and b/tb > a/ta. If either of these

conditions is reversed w1 and w3 will become negative and w2 and w4 positive. In the

case when b/tb = a/ta the warping is zero at all points in the cross-section.

Fig. 18.5 Warping distribution in the rectangular section beam of Example 18.2.
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Fig. 18.6 Arbitrary origin for s.

Suppose now that the origin for s is chosen arbitrarily at, say, point 1. Then, from

Fig. 18.6, δOs in the wall 12= s1/ta and AOs = 1
2
s1b/2= s1b/4 and both are positive.

Substituting in Eq. (i) and setting w0 = 0

w′
12 =

Tδ

2abG

(

s1

δta
−

s1

4a

)

(iv)

so that w′
12 varies linearly from zero at 1 to

w′
2 =

T

2abG
2

(

b

tb
+

a

ta

) [

a

2(b/tb + a/ta)ta
−

1

4

]

at 2. Thus

w′
2 =

T

4abG

(

a

ta
−

b

tb

)

or

w′
2 = −

T

4abG

(

b

tb
−

a

ta

)

(v)

Similarly

w′
23 =

Tδ

2abG

[

1

δ

(

a

ta
+

s2

tb

)

−
1

4b
(b + s2)

]

(vi)

Thewarpingdistribution therefore varies linearly fromavalue−T (b/tb − a/ta)/4abG

at 2 to zero at 3. The remaining distribution follows from symmetry so that the complete

distribution takes the form shown in Fig. 18.7.

Comparing Figs 18.5 and 18.7 it can be seen that the form of the warping distribution

is the same but that in the latter case the complete distribution has been displaced axially.

The actual value of the warping at the origin for s is found using Eq. (17.26).
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Fig. 18.7 Warping distribution produced by selecting an arbitrary origin for s.

Thus

w0 =
2

2(ata + btb)

(

∫ a

0

w′
12ta ds1 +

∫ b

0

w′
23tb ds2

)

(vii)

Substituting in Eq. (vii) for w′
12 and w′

23 from Eqs (iv) and (vi), respectively, and

evaluating gives

w0 = −
T

8abG

(

b

tb
−

a

ta

)

(viii)

Subtracting this value from the values of w′
1(= 0) and w′

2(= −T (b/tb − a/ta)/4abG)

we have

w1 =
T

8abG

(

b

tb
−

a

ta

)

, w2 = −
T

8abG

(

b

tb
−

a

ta

)

as before. Note that setting w0 = 0 in Eq. (i) implies that w0, the actual value of

warping at the origin for s, has been added to all warping displacements. This value

must therefore be subtracted from the calculated warping displacements (i.e. those

based on an arbitrary choice of origin) to obtain true values.

It is instructive at this stage to examine the mechanics of warping to see how it arises.

Suppose that each end of the rectangular section beam of Example 18.2 rotates through

opposite angles θ giving a total angle of twist 2θ along its length L. The corner 1 at

one end of the beam is displaced by amounts aθ/2 vertically and bθ/2 horizontally as

shown in Fig. 18.8. Consider now the displacements of the web and cover of the beam

due to rotation. From Figs 18.8 and 18.9 (a) and (b) it can be seen that the angles of

rotation of the web and the cover are, respectively

φb = (aθ/2)/(L/2) = aθ/L

and

φa = (bθ/2)/(L/2) = bθ/L
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Fig. 18.8 Twisting of a rectangular section beam.

Fig. 18.9 Displacements due to twist and shear strain.

The axial displacements of the corner 1 in the web and cover are then

b

2

aθ

L
,

a

2

bθ

L

respectively, as shown in Fig. 18.9(a) and (b). In addition to displacements produced by

twisting, the webs and covers are subjected to shear strains γb and γa corresponding to

the shear stress system given by Eq. (18.1). Due to γb the axial displacement of corner 1

in the web is γbb/2 in the positive z direction while in the cover the displacement is

γaa/2 in the negative z direction. Note that the shear strains γb and γa correspond to

the shear stress system produced by a positive anticlockwise torque. Clearly, the total

axial displacement of the point 1 in the web and cover must be the same so that

−
b

2

aθ

L
+ γb

b

2
=

a

2

bθ

L
− γa

a

2

from which

θ =
L

2ab
(γaa + γbb)
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The shear strains are obtained from Eq. (18.1) and are

γa =
T

2abGta
, γb =

T

2abGtb

whence

θ =
TL

4a2b2G

(

a

ta
+

b

tb

)

The total angle of twist from end to end of the beam is 2θ, therefore

2θ

L
=

TL

4a2b2G

(

2a

ta
+

2b

tb

)

or

dθ

dz
=

T

4A2G

∮

ds

t

as in Eq. (18.4).

Substituting for θ in either of the expressions for the axial displacement of the corner 1

gives the warping w1 at 1. Thus

w1 =
a

2

b

L

TL

4a2b2G

(

a

ta
+

b

tb

)

−
T

2abGta

a

2

i.e.

w1 =
T

8abG

(

b

tb
−

a

ta

)

as before. It can be seen that the warping of the cross-section is produced by a

combination of the displacements caused by twisting and the displacements due to

the shear strains; these shear strains correspond to the shear stresses whose values are

fixed by statics. The angle of twist must therefore be such as to ensure compatibility of

displacement between the webs and covers.

18.1.2 Condition for zero warping at a section

The geometry of the cross-section of a closed section beam subjected to torsion may

be such that no warping of the cross-section occurs. From Eq. (18.5) we see that this

condition arises when

δOs

δ
=

AOs

A

or

1

δ

∫ s

0

ds

Gt
=

1

2A

∫ s

0

pR ds (18.6)



18.2 Torsion of open section beams 537

Differentiating Eq. (18.6) with respect to s gives

1

δGt
=

pR

2A

or

pRGt =
2A

δ
= constant (18.7)

A closed section beam for which pRGt = constant does not warp and is known as a

Neuber beam. For closed section beams having a constant shear modulus the condition

becomes

pRt = constant (18.8)

Examples of such beams are: a circular section beamof constant thickness; a rectangular

section beam for which atb = bta (see Example 18.2); and a triangular section beam of

constant thickness. In the last case the shear centre and hence the centre of twist may

be shown to coincide with the centre of the inscribed circle so that pR for each side is

the radius of the inscribed circle.

18.2 Torsion of open section beams

Anapproximate solution for the torsionof a thin-walledopen sectionbeammaybe found

by applying the results obtained in Section 3.4 for the torsion of a thin rectangular strip.

If such a strip is bent to form an open section beam, as shown in Fig. 18.10(a), and if the

distance s measured around the cross-section is large compared with its thickness t then

Fig. 18.10 (a) Shear lines in a thin-walled open section beam subjected to torsion; (b) approximation of elemental
shear lines to those in a thin rectangular strip.
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the contours of the membrane, i.e. lines of shear stress, are still approximately parallel

to the inner and outer boundaries. It follows that the shear lines in an element δs of the

open section must be nearly the same as those in an element δy of a rectangular strip

as demonstrated in Fig. 18.10(b). Equations (3.27)–(3.29) may therefore be applied to

the open beam but with reduced accuracy. Referring to Fig. 18.10(b) we observe that

Eq. (3.27) becomes

τzs = 2Gn
dθ

dz
, τzn = 0 (18.9)

Equation (3.28) becomes

τzs,max = ±Gt
dθ

dz
(18.10)

and Eq. (3.29) is

J =
∑ st3

3
or J =

1

3

∫

sect

t3 ds (18.11)

In Eq. (18.11) the second expression for the torsion constant is used if the cross-section

has a variable wall thickness. Finally, the rate of twist is expressed in terms of the

applied torque by Eq. (3.12), viz.

T = GJ
dθ

dz
(18.12)

The shear stress distribution and the maximum shear stress are sometimes more

conveniently expressed in terms of the applied torque. Therefore, substituting for dθ/dz

in Eqs (18.9) and (18.10) gives

τzs =
2n

J
T , τzs,max = ±

tT

J
(18.13)

We assume in open beam torsion analysis that the cross-section is maintained by the

system of closely spaced diaphragms described in Section 17.1 and that the beam is of

uniform section. Clearly, in this problem the shear stresses vary across the thickness of

the beam wall whereas other stresses such as axial constraint stresses which we shall

discuss in Chapter 27 are assumed constant across the thickness.

18.2.1 Warping of the cross-section

We saw in Section 3.4 that a thin rectangular strip suffers warping across its thickness

when subjected to torsion. In the same way a thin-walled open section beam will warp

across its thickness. This warping, wt, may be deduced by comparing Fig. 18.10(b)

with Fig. 3.10 and using Eq. (3.32), thus

wt = ns
dθ

dz
(18.14)



18.2 Torsion of open section beams 539

In addition to warping across the thickness, the cross-section of the beam will warp in

a similar manner to that of a closed section beam. From Fig. 17.3

γzs =
∂w

∂s
+

∂vt

∂z
(18.15)

Referring the tangential displacement vt to the centre of twist R of the cross-section we

have, from Eq. (17.8)

∂vt

∂z
= pR

dθ

dz
(18.16)

Substituting for ∂vt/∂z in Eq. (18.15) gives

γzs =
∂w

∂s
+ pR

dθ

dz

from which

τzs = G

(

∂w

∂s
+ pR

dθ

dz

)

(18.17)

On the mid-line of the section wall τzs = 0 (see Eq. (18.9)) so that, from Eq. (18.17)

∂w

∂s
= −pR

dθ

dz

Integrating this expression with respect to s and taking the lower limit of integration to

coincide with the point of zero warping, we obtain

ws = −
dθ

dz

∫ s

0

pR ds (18.18)

From Eqs (18.14) and (18.18) it can be seen that two types of warping exist in an open

section beam. Equation (18.18) gives the warping of the mid-line of the beam; this is

known as primary warping and is assumed to be constant across the wall thickness.

Equation (18.14) gives the warping of the beam across its wall thickness. This is called

secondary warping, is very much less than primary warping and is usually ignored in

the thin-walled sections common to aircraft structures.

Equation (18.18) may be rewritten in the form

ws = −2AR
dθ

dz
(18.19)

or, in terms of the applied torque

ws = −2AR
T

GJ
(see Eq. (18.12)) (18.20)

inwhichAR = 1
2

∫ s

0 pR ds is the area swept out by a generator, rotating about the centre of

twist, from the point of zero warping, as shown in Fig. 18.11. The sign ofws, for a given

direction of torque, depends upon the sign of AR which in turn depends upon the sign of
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Fig. 18.11 Warping of an open section beam.

pR, the perpendicular distance from the centre of twist to the tangent at any point.Again,

as for closed section beams, the sign of pR depends upon the assumed direction of a

positive torque, in this case anticlockwise. Therefore, pR (and therefore AR) is positive

if movement of the foot of pR along the tangent in the assumed direction of s leads to

an anticlockwise rotation of pR about the centre of twist. Note that for open section

beams the positive direction of s may be chosen arbitrarily since, for a given torque,

the sign of the warping displacement depends only on the sign of the swept area AR.

Example 18.3
Determine the maximum shear stress and the warping distribution in the channel sec-

tion shown in Fig. 18.12 when it is subjected to an anticlockwise torque of 10Nm.

G= 25 000N/mm2.

From the second of Eqs (18.13) it can be seen that themaximum shear stress occurs in

the web of the section where the thickness is greatest. Also, from the first of Eqs (18.11)

J = 1
3
(2 × 25 × 1.53 + 50 × 2.53) = 316.7mm4

so that

τmax = ±
2.5 × 10 × 103

316.7
= ±78.9N/mm2

The warping distribution is obtained using Eq. (18.20) in which the origin for s (and

hence AR) is taken at the intersection of the web and the axis of symmetry where the

warping is zero. Further, the centre of twist R of the section coincides with its shear

centre S whose position is found using the method described in Section 17.2.1, this

gives ξS = 8.04mm. In the wall O2

AR = 1
2

× 8.04s1 (pR is positive)

so that

wO2 = −2 × 1
2

× 8.04s1 ×
10 × 103

25 000 × 316.7
= −0.01s1 (i)



18.2 Torsion of open section beams 541

Fig. 18.12 Channel section of Example 18.3.

i.e. the warping distribution is linear in O2 and

w2 = −0.01 × 25 = −0.25mm

In the wall 21

AR = 1
2

× 8.04 × 25 − 1
2

× 25s2

in which the area swept out by the generator in the wall 21 provides a negative

contribution to the total swept area AR. Thus

w21 = −25(8.04 − s2)
10 × 103

25 000 × 316.7

or

w21 = −0.03(8.04 − s2) (ii)

Again the warping distribution is linear and varies from −0.25mm at 2 to +0.54mm

at 1. Examination of Eq. (ii) shows that w21 changes sign at s2 = 8.04mm. The remain-

ing warping distribution follows from symmetry and the complete distribution is shown

in Fig. 18.13. In unsymmetrical section beams the position of the point of zero warping

is not known but may be found using the method described in Section 27.2 for the

restrained warping of an open section beam. From the derivation of Eq. (27.3) we see

that

2A′
R =

∫

sect 2AR,Ot ds
∫

sect t ds
(18.21)

in which AR,O is the area swept out by a generator rotating about the centre of twist

from some convenient origin and A′
R is the value of AR,O at the point of zero warping.

As an illustration we shall apply the method to the beam section of Example 18.3.
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Fig. 18.13 Warping distribution in channel section of Example 18.3.

Suppose that the position of the centre of twist (i.e. the shear centre) has already

been calculated and suppose also that we choose the origin for s to be at the point 1.

Then, in Fig. 18.14

∫

sect

t ds = 2 × 1.5 × 25 + 2.5 × 50 = 200mm2

In the wall 12

A12 = 1
2

× 25s1 (AR,O for the wall 12) (i)

from which

A2 = 1
2

× 25 × 25 = 312.5mm2

Also

A23 = 312.5 − 1
2

× 8.04s2 (ii)

and

A3 = 312.5 − 1
2

× 8.04 × 50 = 111.5mm2

Finally

A34 = 111.5 + 1
2

× 25s3 (iii)
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Fig. 18.14 Determination of points of zero warping.

Substituting for A12, A23 and A34 from Eqs (i)–(iii) in Eq. (18.21) we have

2A′
R =

1

200

[

∫ 25

0

25 × 1.15s1 ds1 +

∫ 50

0

2(312.5 − 4.02s2)2.5 ds2

+

∫ 25

0

2(111.5 + 12.5s3)1.5 ds3

]

(iv)

Evaluation of Eq. (iv) gives

2A′
R = 424mm2

We now examine each wall of the section in turn to determine points of zero warping.

Suppose that in the wall 12 a point of zero warping occurs at a value of s1 equal to s1,0.

Then

2 × 1
2

× 25s1,0 = 424

from which

s1,0 = 16.96mm

so that a point of zero warping occurs in the wall 12 at a distance of 8.04 mm from the

point 2 as before. In the web 23 let the point of zero warping occur at s2 = s2,0. Then

2 × 1
2

× 25 × 25 − 2 × 1
2

× 8.04s2,0 = 424

which gives s2,0 = 25mm (i.e. on the axis of symmetry). Clearly, from symmetry, a

further point of zero warping occurs in the flange 34 at a distance of 8.04mm from the
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point 3. The warping distribution is then obtained directly using Eq. (18.20) in which

AR = AR,O − A′
R

Problems

P.18.1 A uniform, thin-walled, cantilever beam of closed rectangular cross-section

has the dimensions shown in Fig. P.18.1. The shear modulus G of the top and bottom

covers of the beam is 18 000N/mm2 while that of the vertical webs is 26 000N/mm2.

Fig. P.18.1

The beam is subjected to a uniformly distributed torque of 20Nm/mm along its

length. Calculate the maximum shear stress according to the Bred–Batho theory of

torsion. Calculate also, and sketch, the distribution of twist along the length of the

cantilever assuming that axial constraint effects are negligible.

Ans. τmax = 83.3N/mm2, θ = 8.14× 10−9

(

2500z −
z2

2

)

rad.

P.18.2 A single cell, thin-walled beam with the double trapezoidal cross-section

shown in Fig. P.18.2, is subjected to a constant torqueT = 90 500Nmand is constrained

to twist about an axis through thepointR.Assuming that the shear stresses are distributed

according to the Bredt–Batho theory of torsion, calculate the distribution of warping

around the cross-section.
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Illustrate your answer clearly by means of a sketch and insert the principal values of

the warping displacements.

The shear modulus G= 27 500N/mm2 and is constant throughout.

Ans. w1 = −w6 = −0.53mm, w2 = −w5 = 0.05mm, w3 = −w4 = 0.38mm.

Linear distribution.

Fig. P.18.2

P.18.3 A uniform thin-walled beam is circular in cross-section and has a constant

thickness of 2.5mm. The beam is 2000 mm long, carrying end torques of 450Nm and,

in the same sense, a distributed torque loading of 1.0Nm/mm. The loads are reacted

by equal couples R at sections 500mm distant from each end (Fig. P.18.3).

Calculate the maximum shear stress in the beam and sketch the distribution of twist

along its length. Take G= 30 000N/mm2 and neglect axial constraint effects.

Ans. τmax = 24.2N/mm2, θ = −0.85× 10−8z2 rad, 0≤ z≤ 500mm,

θ = 1.7× 10−8(1450z − z2/2)− 12.33× 10−3 rad, 500≤ z≤ 1000mm.

Fig. P.18.3

P.18.4 The thin-walled box section beam ABCD shown in Fig. P.18.4 is attached

at each end to supports which allow rotation of the ends of the beam in the longitudinal

vertical plane of symmetry but prevent rotation of the ends in vertical planes perpen-

dicular to the longitudinal axis of the beam. The beam is subjected to a uniform torque
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loading of 20Nm/mm over the portion BC of its span. Calculate the maximum shear

stress in the cross-section of the beam and the distribution of angle of twist along its

length, G= 70 000N/mm2.

Ans. 71.4N/mm2, θB = θC = 0.36◦, θ at mid-span= 0.72◦.

4 mm

4 mm

6 mm 6 mm

350 mm

200 mm

20 Nm/mm

4 m

1 m

1 m

A B

C

D

Fig. P.18.4

P.18.5 Figure P.18.5 shows a thin-walled cantilever box beam having a constant

width of 50mm and a depth which decreases linearly from 200mm at the built-in end

to 150mm at the free end. If the beam is subjected to a torque of 1 kNm at its free end,

plot the angle of twist of the beam at 500mm intervals along its length and determine

the maximum shear stress in the beam section. Take G= 25 000N/mm2.

Ans. τmax = 33.3N/mm2.

50 mm

200 mm

2.0 mm

2500 mm

150
mm1 kN m

Fig. P.18.5

P.18.6 A uniform closed section beam, of the thin-walled section shown in

Fig. P.18.6, is subjected to a twisting couple of 4500Nm. The beam is constrained

to twist about a longitudinal axis through the centre C of the semicircular arc 12. For

the curved wall 12 the thickness is 2mm and the shear modulus is 22 000N/mm2. For

the planewalls 23, 34 and 41, the corresponding figures are 1.6mm and 27 500N/mm2.

(Note: Gt = constant.)

Calculate the rate of twist in rad/mm. Give a sketch illustrating the distribution of

warping displacement in the cross-section and quote values at points 1 and 4.
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Ans. dθ/dz= 29.3× 10−6 rad/mm, w3 = −w4 = −0.19mm,

w2 = −w1 = − 0.056mm.

Fig. P.18.6

P.18.7 A uniform beam with the doubly symmetrical cross-section shown in Fig.

P.18.7, has horizontal and vertical walls made of different materials which have shear

moduliGa andGb, respectively. If for anymaterial the ratiomass density/shearmodulus

is constant find the ratio of the wall thicknesses ta and tb, so that for a given torsional

stiffness andgiven dimensionsa, b the beamhasminimumweight per unit span.Assume

the Bredt–Batho theory of torsion is valid.

If this thickness requirement is satisfied find the a/b ratio (previously regarded as

fixed), which gives minimum weight for given torsional stiffness.

Ans. tb/ta =Ga/Gb, b/a= 1.

Fig. P.18.7

P.18.8 The cold-formed section shown in Fig. P.18.8 is subjected to a torque

of 50Nm. Calculate the maximum shear stress in the section and its rate of twist.

G= 25 000N/mm2.

Ans. τmax = 220.6N/mm2, dθ/dz= 0.0044 rad/mm.
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2 mm

20 mm25 mm

25 mm

25 mm

15 mm

15 mm

Fig. P.18.8

P.18.9 Determine the rate of twist per unit torque of the beam section shown in Fig.

P.17.11 if the shear modulus G is 25 000N/mm2. (Note that the shear centre position

has been calculated in P.17.11.)

Ans. 6.42× 10−8 rad/mm.

P.18.10 Figure P.18.10 shows the cross-section of a thin-walled beam in the form

of a channel with lipped flanges. The lips are of constant thickness 1.27mm while

the flanges increase linearly in thickness from 1.27mm where they meet the lips to

Fig. P.18.10
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2.54mm at their junctions with the web. The web has a constant thickness of 2.54mm.

The shear modulus G is 26 700N/mm2 throughout.

The beam has an enforced axis of twist RR′ and is supported in such a way that

warping occurs freely but is zero at the mid-point of the web. If the beam carries a

torque of 100Nm, calculate the maximum shear stress according to the St. Venant

theory of torsion for thin-walled sections. Ignore any effects of stress concentration at

the corners. Find also the distribution of warping along the middle line of the section,

illustrating your results by means of a sketch.

Ans. τmax = ±297.4N/mm2, w1 = −5.48mm= −w6.

w2 = 5.48mm= −w5, w3 = 17.98mm= −w4.

P.18.11 The thin-walled section shown in Fig. P.18.11 is symmetrical about the x

axis. The thickness t0 of the centre web 34 is constant, while the thickness of the other

walls varies linearly from t0 at points 3 and 4 to zero at the open ends 1, 6, 7 and 8.

Determine the St. Venant torsion constant J for the section and also the maximum

value of the shear stress due to a torque T . If the section is constrained to twist about

an axis through the origin O, plot the relative warping displacements of the section per

unit rate of twist.

Ans. J = 4at30/3, τmax = ±3T/4at20 , w1 = +a2(1 + 2
√
2).

w2 = +
√
2a2, w7 = −a2, w3 = 0.

Fig. P.18.11

P.18.12 The thin walled section shown in Fig. P.18.12 is constrained to twist about

an axis through R, the centre of the semicircular wall 34. Calculate the maximum shear
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stress in the section per unit torque and the warping distribution per unit rate of twist.

Also compare the value of warping displacement at the point 1 with that corresponding

to the section being constrained to twist about an axis through the point O and state

what effect this movement has on the maximum shear stress and the torsional stiffness

of the section.

Ans. Maximum shear stress is ±0.42/rt2 per unit torque.

w03 = +r2θ, w32 = +
r

2
(πr + 2s1), w21 = −

r

2
(2s2 − 5.142r).

With centre of twist at O1w1 = −0.43r2. Maximum shear stress is unchanged, torsional

stiffness increased since warping reduced.

1

2

5

6

4

RO

3

r

r

r

r

r

t

r

Fig. P.18.12

P.18.13 Determine the maximum shear stress in the beam section shown in Fig.

P.18.13 stating clearly the point at which it occurs. Determine also the rate of twist of

the beam section if the shear modulus G is 25 000N/mm2.

Ans. 70.2N/mm2 on underside of 24 at 2 or on upper surface of 32 at 2.

9.0× 10−4 rad/mm.

100 mm

3 mm

25 mm

423

1

80 mm

1 kN

2 mm

Fig. P.18.13
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Combined open and closed
section beams

So far, in Chapters 16–18, we have analysed thin-walled beams which consist of either

completely closed cross-sections or completely open cross-sections. Frequently aircraft

components comprise combinations of open and closed section beams. For example

the section of a wing in the region of an undercarriage bay could take the form shown in

Fig. 19.1. Clearly part of the section is an open channel section while the nose portion

is a single cell closed section. We shall now examine the methods of analysis of such

sections when subjected to bending, shear and torsional loads.

19.1 Bending

It is immaterial what form the cross-section of a beam takes; the direct stresses due to

bending are given by either of Eq. (16.18) or (16.19).

19.2 Shear

The methods described in Sections 17.2 and 17.3 are used to determine the shear stress

distribution although, unlike the completely closed section case, shear loads must be

applied through the shear centre of the combined section, otherwise shear stresses of

the type described in Section 18.2 due to torsion will arise. Where shear loads do not

act through the shear centre its position must be found and the loading system replaced

Fig. 19.1 Wing section comprising open and closed components.
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by shear loads acting through the shear centre together with a torque; the two loading

cases are then analysed separately. Again we assume that the cross-section of the beam

remains undistorted by the loading.

Example 19.1
Determine the shear flow distribution in the beam section shown in Fig. 19.2, when it

is subjected to a shear load in its vertical plane of symmetry. The thickness of the walls

of the section is 2mm throughout.

The centroid of area C lies on the axis of symmetry at some distance ȳ from the upper

surface of the beam section. Taking moments of area about this upper surface

(4 × 100 × 2 + 4 × 200 × 2)ȳ = 2 × 100 × 2 × 50 + 2 × 200 × 2 × 100

+ 200 × 2 × 200

which gives ȳ= 75mm.

The second moment of area of the section about Cx is given by

Ixx = 2

(

2 × 1003

12
+ 2 × 100 × 252

)

+ 400 × 2 × 752 + 200 × 2 × 1252

+ 2

(

2 × 2003

12
+ 2 × 200 × 252

)

i.e.

Ixx = 14.5 × 106mm4

Fig. 19.2 Beam section of Example 19.1.
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The section is symmetrical about Cy so that Ixy = 0 and since Sx = 0 the shear flow

distribution in the closed section 3456 is, from Eq. (17.15)

qs = −
Sy

Ixx

∫ s

0

ty ds + qs,0 (i)

Also the shear load is applied through the shear centre of the complete section, i.e.

along the axis of symmetry, so that in the open portions 123 and 678 the shear flow

distribution is, from Eq. (17.14)

qs = −
Sy

Ixx

∫ s

0

ty ds (ii)

We note that the shear flow is zero at the points 1 and 8 and therefore the analysis may

conveniently, though not necessarily, begin at either of these points. Thus, referring to

Fig. 19.2

q12 = −
100 × 103

14.5 × 106

∫ s1

0

2(−25 + s1) ds1

i.e.

q12 = −69.0 × 10−4(−50s1 + s21) (iii)

whence q2 = − 34.5N/mm.

Examination of Eq. (iii) shows that q12 is initially positive and changes sign when

s1 = 50mm. Further, q12 has a turning value (dq12/ds1 = 0) at s1 = 25mmof 4.3N/mm.

In the wall 23

q23 = −69.0 × 10−4

∫ s2

0

2 × 75 ds2 − 34.5

i.e.

q23 = −1.04s2 − 34.5 (iv)

Hence q23 varies linearly from a value of −34.5N/mm at 2 to −138.5N/mm at 3 in the

wall 23.

The analysis of the open part of the beam section is now complete since the shear

flow distribution in the walls 67 and 78 follows from symmetry. To determine the shear

flow distribution in the closed part of the section we must use the method described

in Section 17.3 in which the line of action of the shear load is known. Thus we ‘cut’

the closed part of the section at some convenient point, obtain the qb or ‘open section’

shear flows for the complete section and then takemoments as in Eqs (17.17) or (17.18).

However, in this case, we may use the symmetry of the section and loading to deduce

that the final value of shear flow must be zero at the mid-points of the walls 36 and 45,

i.e. qs = qs,0 = 0 at these points. Hence

q03 = −69.0 × 10−4

∫ s3

0

2 × 75 ds3

so that

q03 = −1.04s3 (v)
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Fig. 19.3 Shear flow distribution in beam of Example 19.1 (all shear flows in N/mm).

and q3 = −104N/mm in the wall 03. It follows that for equilibrium of shear flows at 3,

q3, in the wall 34, must be equal to −138.5 −104= −242.5N/mm. Hence

q34 = −69.0 × 10−4

∫ s4

0

2(75 − s4) ds4 − 242.5

which gives

q34 = −1.04s4 + 69.0 × 10−4s24 − 242.5 (vi)

Examination of Eq. (vi) shows that q34 has a maximum value of −281.7N/mm at

s4 = 75mm; also q4 = −172.5N/mm. Finally, the distribution of shear flow in the wall

94 is given by

q94 = −69.0 × 10−4

∫ s5

0

2(−125) ds5

i.e.

q94 = 1.73s5 (vii)

The complete distribution is shown in Fig. 19.3.

19.3 Torsion

Generally, in the torsion of composite sections, the closed portion is dominant since its

torsional stiffness is far greater than that of the attached open section portion whichmay
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Fig. 19.4 Wing section of Example 19.2.

therefore be frequently ignored in the calculation of torsional stiffness; shear stresses

should, however, be checked in this part of the section.

Example 19.2
Find the angle of twist per unit length in the wing whose cross-section is shown in

Fig. 19.4 when it is subjected to a torque of 10 kN m. Find also the maximum shear

stress in the section. G= 25 000N/mm2.

Wall 12 (outer)= 900mm. Nose cell area= 20 000mm2.

It may be assumed, in a simplified approach, that the torsional rigidity GJ of the

complete section is the sum of the torsional rigidities of the open and closed portions.

For the closed portion the torsional rigidity is, from Eq. (18.4)

(GJ)cl =
4A2G∮
ds/t

=
4 × 20 0002 × 25 000

(900 + 300)/1.5

which gives

(GJ)cl = 5000 × 107Nmm2

The torsional rigidity of the open portion is found using Eq. (18.11), thus

(GJ)op = G
∑ st3

3
=

25 000 × 900 × 23

3

i.e.

(GJ)op = 6 × 107Nmm2

The torsional rigidity of the complete section is then

GJ = 5000 × 107 + 6 × 107 = 5006 × 107Nmm2
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In all unrestrained torsion problems the torque is related to the rate of twist by the

expression

T = GJ
dθ

dz

The angle of twist per unit length is therefore given by

dθ

dz
=

T

GJ
=

10 × 106

5006 × 107
= 0.0002 rad/mm

Substituting for T in Eq. (18.1) from Eq. (18.4), we obtain the shear flow in the closed

section. Thus

qcl =
(GJ)cl

2A

dθ

dz
=

5000 × 107

2 × 20 000
× 0.0002

from which

qcl = 250N/mm

The maximum shear stress in the closed section is then 250/1.5= 166.7N/mm2.

In the open portion of the section the maximum shear stress is obtained directly from

Eq. (18.10) and is

τmax,op = 25 000 × 2 × 0.0002 = 10N/mm2

It can be seen from the above that in terms of strength and stiffness the closed portion

of the wing section dominates. This dominance may be used to determine the warping

distribution. Having first found the position of the centre of twist (the shear centre) the

warping of the closed portion is calculated using the method described in Section 18.1.

The warping in the walls 13 and 34 is then determined using Eq. (18.19), in which the

origin for the swept area AR is taken at the point 1 and the value of warping is that

previously calculated for the closed portion at 1.

Problems

P.19.1 The beam section of Example 19.1 (see Fig. 19.2) is subjected to a bending

moment in a vertical plane of 20 kNm. Calculate the maximum direct stress in the

cross-section of the beam.

Ans. 172.5N/mm2.

P.19.2 A wing box has the cross-section shown diagrammatically in Fig. P.19.2

and supports a shear load of 100 kN in its vertical plane of symmetry. Calculate the

shear stress at the mid-point of the web 36 if the thickness of all walls is 2mm.

Ans. 89.7N/mm2.
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600 mm

100 kN

7

8

1

2 3

4

500 mm

5
6

200 mm
100 mm

100 mm
200 mm

Fig. P.19.2

P.19.3 If the wing box of P.19.2 is subjected to a torque of 100 kNm, calculate

the rate of twist of the section and the maximum shear stress. The shear modulus G is

25000N/mm2.

Ans. 18.5× 10−6 rad/mm, 170N/mm2.



20

Structural idealization

So far we have been concerned with relatively uncomplicated structural sections which

in practice would be formed from thin plate or by the extrusion process. While these

sections exist as structural members in their own right they are frequently used, as we

saw in Chapter 12, to stiffen more complex structural shapes such as fuselages, wings

and tail surfaces. Thus a two spar wing section could take the form shown in Fig. 20.1

in which Z-section stringers are used to stiffen the thin skin while angle sections form

the spar flanges. Clearly, the analysis of a section of this type would be complicated

and tedious unless some simplifying assumptions are made. Generally, the number

and nature of these simplifying assumptions determine the accuracy and the degree

of complexity of the analysis; the more complex the analysis the greater the accuracy

obtained. The degree of simplification introduced is governed by the particular situation

surrounding the problem. For a preliminary investigation, speed and simplicity are often

of greater importance than extreme accuracy; on the other hand a final solution must

be as exact as circumstances allow.

Complex structural sections may be idealized into simpler ‘mechanical model’ forms

which behave, under given loading conditions, in the same, or very nearly the same,

way as the actual structure. We shall see, however, that different models of the same

structure are required to simulate actual behaviour under different systems of loading.

20.1 Principle

In the wing section of Fig. 20.1 the stringers and spar flanges have small cross-sectional

dimensions compared with the complete section. Therefore, the variation in stress

Fig. 20.1 Typical wing section.
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Fig. 20.2 Idealization of a wing section.

over the cross-section of a stringer due to, say, bending of the wing would be small.

Furthermore, the difference between the distances of the stringer centroids and the

adjacent skin from the wing section axis is small. It would be reasonable to assume

therefore that the direct stress is constant over the stringer cross-sections. We could

therefore replace the stringers and spar flanges by concentrations of area, known as

booms, over which the direct stress is constant and which are located along the mid-

line of the skin, as shown in Fig. 20.2. In wing and fuselage sections of the type shown

in Fig. 20.1, the stringers and spar flanges carrymost of the direct stresses while the skin

is mainly effective in resisting shear stresses although it also carries some of the direct

stresses. The idealization shown in Fig. 20.2 may therefore be taken a stage further by

assuming that all direct stresses are carried by the booms while the skin is effective

only in shear. The direct stress carrying capacity of the skin may be allowed for by

increasing each boom area by an area equivalent to the direct stress carrying capacity

of the adjacent skin panels. The calculation of these equivalent areas will generally

depend upon an initial assumption as to the form of the distribution of direct stress in

a boom/skin panel.

20.2 Idealization of a panel

Suppose that we wish to idealize the panel of Fig. 20.3(a) into a combination of direct

stress carrying booms and shear stress only carrying skin as shown in Fig. 20.3(b).

In Fig. 20.3(a) the direct stress carrying thickness tD of the skin is equal to its actual

thickness t while in Fig. 20.3(b) tD = 0. Suppose also that the direct stress distribution

in the actual panel varies linearly from an unknown value σ1 to an unknown value

σ2. Clearly the analysis should predict the extremes of stress σ1 and σ2 although the

distribution of direct stress is obviously lost. Since the loading producing the direct

stresses in the actual and idealized panels must be the same we can equate moments

to obtain expressions for the boom areas B1 and B2. Thus, taking moments about the

right-hand edge of each panel

σ2tD
b2

2
+

1

2
(σ1 − σ2)tDb

2

3
b = σ1B1b

whence

B1 =
tDb

6

(

2 +
σ2

σ1

)

(20.1)
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Fig. 20.3 Idealization of a panel.

Similarly

B2 =
tDb

6

(

2 +
σ1

σ2

)

(20.2)

In Eqs (20.1) and (20.2) the ratio of σ1 to σ2, if not known, may frequently be assumed.

The direct stress distribution in Fig. 20.3(a) is caused by a combination of axial load

and bending moment. For axial load only σ1/σ2 = 1 and B1 =B2 = tDb/2; for a pure

bending moment σ1/σ2 = −1 and B1 =B2 = tDb/6. Thus, different idealizations of the

same structure are required for different loading conditions.

Example 20.1
Part of awing section is in the formof the two-cell box shown inFig. 20.4(a) inwhich the

vertical spars are connected to the wing skin through angle sections all having a cross-

sectional area of 300mm2. Idealize the section into an arrangement of direct stress

carrying booms and shear stress only carrying panels suitable for resisting bending

moments in a vertical plane. Position the booms at the spar/skin junctions.

The idealized section is shown in Fig. 20.4(b) in which, from symmetry, B1 =B6,

B2 =B5, B3 =B4. Since the section is required to resist bending moments in a vertical

plane the direct stress at any point in the actual wing section is directly proportional

to its distance from the horizontal axis of symmetry. Further, the distribution of direct

stress in all the panels will be linear so that either of Eqs (20.1) or (20.2) may be used.

We note that, in addition to contributions from adjacent panels, the boom areas include

Fig. 20.4 Idealization of a wing section.



20.3 Effect of idealization on the analysis of open and closed section beams 561

the existing spar flanges. Hence

B1 = 300 +
3.0 × 400

6

(

2 +
σ6

σ1

)

+
2.0 × 600

6

(

2 +
σ2

σ1

)

or

B1 = 300 +
3.0 × 400

6
(2 − 1) +

2.0 × 600

6

(

2 +
150

200

)

which gives

B1(=B6) = 1050mm2

Also

B2 = 2×300+
2.0 × 600

6

(

2 +
σ1

σ2

)

+
2.5 × 300

6

(

2 +
σ5

σ2

)

+
1.5 × 600

6

(

2 +
σ3

σ2

)

i.e.

B2 = 2× 300+
2.0 × 600

6

(

2 +
200

150

)

+
2.5 × 300

6
(2− 1)+

1.5 × 600

6

(

2 +
100

150

)

from which

B2( = B5) = 1791.7mm2

Finally

B3 = 300 +
1.5 × 600

6

(

2 +
σ2

σ3

)

+
2.0 × 200

6

(

2 +
σ4

σ3

)

i.e.

B3 = 300 +
1.5 × 600

6

(

2 +
150

100

)

+
2.0 × 200

6
(2 − 1)

so that

B3( = B4) = 891.7mm2

20.3 Effect of idealization on the analysis of open
and closed section beams

The addition of direct stress carrying booms to open and closed section beams will

clearlymodify the analyses presented in Chapters 16–18. Before considering individual

cases we shall discuss the implications of structural idealization. Generally, in any

idealization, different loading conditions require different idealizations of the same

structure. In Example 20.1, the loading is applied in a vertical plane. If, however,

the loading had been applied in a horizontal plane the assumed stress distribution in
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the panels of the section would have been different, resulting in different values of

boom area.

Suppose that an open or closed section beam is subjected to given bending or shear

loads and that the required idealization has been completed. The analysis of such sec-

tions usually involves the determination of the neutral axis position and the calculation

of sectional properties. The position of the neutral axis is derived from the condition

that the resultant load on the beam cross-section is zero, i.e.
∫

A

σz dA = 0 (see Eq. (16.3))

The area A in this expression is clearly the direct stress carrying area. It follows that

the centroid of the cross-section is the centroid of the direct stress carrying area of the

section, depending on the degree and method of idealization. The sectional properties,

Ixx, etc., must also refer to the direct stress carrying area.

20.3.1 Bending of open and closed section beams

The analysis presented in Sections 16.1 and 16.2 applies and the direct stress distribution

is given by any of Eqs (16.9), (16.18) or (16.19), depending on the beam section being

investigated. In these equations the coordinates (x, y) of points in the cross-section are

referred to axes having their origin at the centroid of the direct stress carrying area.

Furthermore, the section properties Ixx, Iyy and Ixy are calculated for the direct stress

carrying area only.

In the case where the beam cross-section has been completely idealized into direct

stress carrying booms and shear stress only carrying panels, the direct stress distribution

consists of a series of direct stresses concentrated at the centroids of the booms.

Example 20.2
The fuselage section shown in Fig. 20.5 is subjected to a bending moment of 100 kNm

applied in the vertical plane of symmetry. If the section has been completely idealized

into a combination of direct stress carrying booms and shear stress only carrying panels,

determine the direct stress in each boom.

The section has Cy as an axis of symmetry and resists a bending moment

Mx = 100 kNm. Equation (16.18) therefore reduces to

σz =
Mx

Ixx
y (i)

The origin of axes Cxy coincides with the position of the centroid of the direct stress

carrying area which, in this case, is the centroid of the boom areas. Thus, taking

moments of area about boom 9

(6 × 640 + 6 × 600 + 2 × 620 + 2 × 850)y

= 640 × 1200 + 2 × 600 × 1140 + 2 × 600 × 960 + 2 × 600 × 768

+ 2 × 620 × 565 + 2 × 640 × 336 + 2 × 640 × 144 + 2 × 850 × 38
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Fig. 20.5 Idealized fuselage section of Example 20.2.

Table 20.1

➀ ➁ ➂ ➃ ➄

Boom y (mm) B (mm2) �Ixx =By2 (mm4) σz (N/mm2)

1 +660 640 278× 106 35.6

2 +600 600 216× 106 32.3

3 +420 600 106× 106 22.6

4 +228 600 31× 106 12.3

5 +25 620 0.4× 106 1.3

6 −204 640 27× 106 −11.0

7 −396 640 100× 106 −21.4

8 −502 850 214× 106 −27.0

9 −540 640 187× 106 −29.0

which gives

y = 540mm

The solution is now completed in Table 20.1

From column ➃

Ixx = 1854 × 106mm4

and column ➄ is completed using Eq. (i).

20.3.2 Shear of open section beams

The derivation of Eq. (17.14) for the shear flow distribution in the cross-section of an

open section beam is based on the equilibrium equation (17.2). The thickness t in this
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C

Fig. 20.6 (a) Elemental length of shear loaded open section beam with booms; (b) equilibrium of boom element.

equation refers to the direct stress carrying thickness tD of the skin. Equation (17.14)

may therefore be rewritten

qs = −

(

SxIxx − SyIxy

IxxIyy − I2xy

)

∫ s

0

tDx ds −

(

SyIyy − SxIxy

IxxIyy − I2xy

)

∫ s

0

tDy ds (20.3)

in which tD = t if the skin is fully effective in carrying direct stress or tD = 0 if the skin

is assumed to carry only shear stresses. Again the section properties in Eq. (20.3) refer

to the direct stress carrying area of the section since they are those which feature in Eqs

(16.18) and (16.19).

Equation (20.3) makes no provision for the effects of booms which cause discon-

tinuities in the skin and therefore interrupt the shear flow. Consider the equilibrium

of the rth boom in the elemental length of beam shown in Fig. 20.6(a) which carries

shear loads Sx and Sy acting through its shear centre S. These shear loads produce direct

stresses due to bending in the booms and skin and shear stresses in the skin. Suppose

that the shear flows in the skin adjacent to the rth boom of cross-sectional area Br are

q1 and q2. Then, from Fig. 20.6(b)

(

σz +
∂σz

∂z
δz

)

Br − σzBr + q2δz − q1δz = 0

which simplifies to

q2 − q1 = −
∂σz

∂z
Br (20.4)
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Substituting for σz in Eq. (20.4) from (16.18) we have

q2 − q1 = −

[

(∂My/∂z)Ixx − (∂Mx/∂z)Ixy

IxxIyy − I2xy

]

Brxr

−

[

(∂Mx/∂z)Iyy − (∂My/∂z)Ixy

IxxIyy − I2xy

]

Bryr

or, using the relationships of Eqs (16.23) and (16.24)

q2 − q1 = −

(

SxIxx − SyIxy

IxxIyy − I2xy

)

Brxr −

(

SyIyy − SxIxy

IxxIyy − I2xy

)

Bryr (20.5)

Equation (20.5) gives the change in shear flow induced by a boom which itself is

subjected to a direct load (σzBr). Each time a boom is encountered the shear flow is

incremented by this amount so that if, at any distance s around the profile of the section,

n booms have been passed, the shear flow at the point is given by

qs = −

(

SxIxx − SyIxy

IxxIyy − I2xy

) (

∫ s

0

tDx ds +

n
∑

r=1

Brxr

)

−

(

SyIyy − SxIxy

IxxIyy − I2xy

) (

∫ s

0

tDy ds +

n
∑

r=1

Bryr

)

(20.6)

Example 20.3
Calculate the shear flow distribution in the channel section shown in Fig. 20.7 produced

by a vertical shear load of 4.8 kN acting through its shear centre. Assume that the walls

of the section are only effective in resisting shear stresses while the booms, each of

area 300mm2, carry all the direct stresses.

The effective direct stress carrying thickness tD of the walls of the section is zero so

that the centroid of area and the section properties refer to the boom areas only. Since

Cx (and Cy as far as the boom areas are concerned) is an axis of symmetry Ixy = 0; also

Sx = 0 and Eq. (20.6) thereby reduces to

qs = −
Sy

Ixx

n
∑

r=1

Bryr (i)

in which Ixx = 4× 300× 2002 = 48× 106mm4. Substituting the values of Sy and Ixx
in Eq. (i) gives

qs = −
4.8 × 103

48 × 106

n
∑

r=1

Bryr = −10−4
n

∑

r=1

Bryr (ii)

At the outside of boom 1, qs = 0. As boom 1 is crossed the shear flow changes by an

amount given by

�q1 = −10−4 × 300 × 200 = −6N/mm
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Fig. 20.7 Idealized channel section of Example 20.3.

Hence q12 = −6N/mm since, from Eq. (i), it can be seen that no further changes in

shear flow occur until the next boom (2) is crossed. Hence

q23 = −6 − 10−4 × 300 × 200 = −12N/mm

Similarly

q34 = −12 − 10−4 × 300 × (−200) = −6N/mm

while, finally, at the outside of boom 4 the shear flow is

−6 − 10−4 × 300 × (−200) = 0

as expected. The complete shear flow distribution is shown in Fig. 20.8.

It can be seen from Eq. (i) in Example 20.3 that the analysis of a beam section

which has been idealized into a combination of direct stress carrying booms and shear

Fig. 20.8 Shear flow in channel section of Example 20.3.
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O

Fig. 20.9 Curved web with constant shear flow.

stress only carrying skin gives constant values of the shear flow in the skin between the

booms; the actual distribution of shear flows is therefore lost. What remains is in fact

the average of the shear flow, as can be seen by referring to Example 20.3. Analysis of

the unidealized channel section would result in a parabolic distribution of shear flow

in the web 23 whose resultant is statically equivalent to the externally applied shear

load of 4.8 kN. In Fig. 20.8 the resultant of the constant shear flow in the web 23 is

12× 400= 4800N= 4.8 kN. It follows that this constant value of shear flow is the

average of the parabolically distributed shear flows in the unidealized section.

The result, from the idealization of a beam section, of a constant shear flow between

booms may be used to advantage in parts of the analysis. Suppose that the curved

web 12 in Fig. 20.9 has booms at its extremities and that the shear flow q12 in the web

is constant. The shear force on an element δs of the web is q12δs, whose components

horizontally and vertically are q12δs cosφ and q12δs sin φ. The resultant, parallel to the

x axis, Sx, of q12 is therefore given by

Sx =

∫ 2

1

q12 cosφ ds

or

Sx = q12

∫ 2

1

cosφ ds

which, from Fig. 20.9, may be written

Sx = q12

∫ 2

1

dx = q12(x2 − x1) (20.7)

Similarly the resultant of q12 parallel to the y axis is

Sy = q12(y2 − y1) (20.8)
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Thus the resultant, in a given direction, of a constant shear flow acting on a web is the

value of the shear flow multiplied by the projection on that direction of the web.

The resultant shear force S on the web of Fig. 20.9 is

S =

√

S2x + S2y = q12

√

(x2 − x1)2 + (y2 − y1)2

i.e.

S = q12L12 (20.9)

Therefore, the resultant shear force acting on the web is the product of the shear flow

and the length of the straight line joining the ends of the web; clearly the direction of

the resultant is parallel to this line.

The moment Mq produced by the shear flow q12 about any point O in the plane of

the web is, from Fig. 20.10

Mq =

∫ 2

1

q12p ds = q12

∫ 2

1

2 dA

or

Mq = 2Aq12 (20.10)

in which A is the area enclosed by the web and the lines joining the ends of the web to

the point O. This result may be used to determine the distance of the line of action of

the resultant shear force from any point. From Fig. 20.10

Se = 2Aq12

from which

e =
2A

S
q12

Fig. 20.10 Moment produced by a constant shear flow.



20.3 Effect of idealization on the analysis of open and closed section beams 569

Substituting for q12 from Eq. (20.9) gives

e =
2A

L12

20.3.3 Shear loading of closed section beams

Arguments identical to those in the shear of open section beams apply in this case.

Thus, the shear flow at any point around the cross-section of a closed section beam

comprising booms and skin of direct stress carrying thickness tD is, by a comparison

of Eqs (20.6) and (17.15)

qs = −

(

SxIxx − SyIxy

IxxIyy − I2xy

) (

∫ s

0

tDx ds +

n
∑

r=1

Brxr

)

−

(

SyIyy − SxIxy

IxxIyy − I2xy

) (

∫ s

0

tDy ds +

n
∑

r=1

Bryr

)

+ qs,0 (20.11)

Note that the zero value of the ‘basic’ or ‘open section’ shear flow at the ‘cut’ in a skin

for which tD = 0 extends from the ‘cut’ to the adjacent booms.

Example 20.4
The thin-walled single cell beam shown in Fig. 20.11 has been idealized into a com-

bination of direct stress carrying booms and shear stress only carrying walls. If the

section supports a vertical shear load of 10 kN acting in a vertical plane through booms

3 and 6, calculate the distribution of shear flow around the section.

Boom areas: B1 =B8 = 200mm2, B2 =B7 = 250mm2, B3 =B6 = 400mm2, B4 =

B5 = 100mm2.

The centroid of the direct stress carrying area lies on the horizontal axis of symmetry

so that Ixy = 0. Also, since tD = 0 and only a vertical shear load is applied,

Fig. 20.11 Closed section of beam of Example 20.4.
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Eq. (20.11) reduces to

qs = −
Sy

Ixx

n
∑

r=1

Bryr + qs,0 (i)

in which

Ixx = 2(200 × 302 + 250 × 1002 + 400 × 1002 + 100 × 502) = 13.86 × 106mm4

Equation (i) then becomes

qs = −
10 × 103

13.86 × 106

n
∑

r=1

Bryr + qs,0

i.e.

qs = −7.22 × 10−4
n

∑

r=1

Bryr + qs,0 (ii)

‘Cutting’ the beam section in the wall 23 (any wall may be chosen) and calculating the

‘basic’ shear flow distribution qb from the first term on the right-hand side of Eq. (ii)

we have

qb,23 = 0

qb,34 = −7.22 × 10−4(400 × 100) = −28.9N/mm

qb,45 = −28.9 − 7.22 × 10−4(100 × 50) = −32.5N/mm

qb,56 = qb,34 = −28.9N/mm (by symmetry)

qb,67 = qb,23 = 0 (by symmetry)

qb,21 = −7.22 × 10−4(250 × 100) = −18.1N/mm

qb,18 = −18.1 − 7.22 × 10−4(200 × 30) = −22.4N/mm

qb,87 = qb,21 = −18.1N/mm (by symmetry)

Taking moments about the intersection of the line of action of the shear load and the

horizontal axis of symmetry and referring to the results of Eqs (20.7) and (20.8) we

have, from Eq. (17.18)

0 = [qb,81 × 60 × 480 + 2qb,12(240 × 100 + 70 × 240) + 2qb,23 × 240 × 100

− 2qb,43 × 120 × 100 − qb,54 × 100 × 120] + 2 × 97 200qs,0

Substituting the above values of qb in this equation gives

qs,0 = −5.4N/mm

the negative sign indicating that qs,0 acts in a clockwise sense.

In any wall the final shear flow is given by qs = qb + qs,0 so that

q21 = −18.1 + 5.4 = −12.7N/mm = q87

q23 = −5.4N/mm = q67
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Fig. 20.12 Shear flow distribution N/mm in walls of the beam section of Example 20.4.

q34 = −34.3N/mm = q56

q45 = −37.9N/mm

and

q81 = 17.0N/mm

giving the shear flow distribution shown in Fig. 20.12.

20.3.4 Alternative method for the calculation of shear flow
distribution

Equation (20.4) may be rewritten in the form

q2 − q1 =
∂Pr

∂z
(20.12)

in which Pr is the direct load in the rth boom. This form of the equation suggests an

alternative approach to the determination of the effect of booms on the calculation of

shear flow distributions in open and closed section beams.

Let us suppose that the boom load varies linearly with z. This will be the case for a

length of beam over which the shear force is constant. Equation (20.12) then becomes

q2 − q1 = −�Pr (20.13)

in which �Pr is the change in boom load over unit length of the rth boom. �Pr

may be calculated by first determining the change in bending moment between two

sections of a beam a unit distance apart and then calculating the corresponding change

in boom stress using either of Eq. (16.18) or (16.19); the change in boom load follows

by multiplying the change in boom stress by the boom area Br . Note that the section

properties contained in Eqs (16.18) and (16.19) refer to the direct stress carrying area

of the beam section. In cases where the shear force is not constant over the unit length

of beam the method is approximate.

We shall illustrate the method by applying it to Example 20.3. In Fig. 20.7 the shear

load of 4.8 kN is applied to the face of the section which is seen when a view is taken

along the z axis towards the origin. Thus, when considering unit length of the beam,

we must ensure that this situation is unchanged. Figure 20.13 shows a unit (1mm say)

length of beam. The change in bending moment between the front and rear faces of the
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Fig. 20.13 Alternative solution to Example 20.3.

length of beam is 4.8× 1 kNmm which produces a change in boom load given by (see

Eq. (16.18))

�Pr =
4.8 × 103 × 200

48 × 106
× 300 = 6N

The change in boom load is compressive in booms 1 and 2 and tensile in booms 3 and 4.

Equation (20.12), and hence Eq. (20.13), is based on the tensile load in a boom

increasing with increasing z. If the tensile load had increased with decreasing z the

right-hand side of these equations would have been positive. It follows that in the case

where a compressive load increases with decreasing z, as for booms 1 and 2 in Fig.

20.13, the right-hand side is negative; similarly for booms 3 and 4 the right-hand side

is positive. Thus

q12 = −6N/mm

q23 = −6 + q12 = −12N/mm

and

q34 = +6 + q23 = −6N/mm

giving the same solution as before. Note that if the unit length of beam had been

taken to be 1m the solution would have been q12 = −6000N/m, q23 = −12 000N/m,

q34 = −6000N/m.

20.3.5 Torsion of open and closed section beams

No direct stresses are developed in either open or closed section beams subjected to a

pure torque unless axial constraints are present. The shear stress distribution is therefore

unaffected by the presence of booms and the analyses presented in Chapter 18 apply.
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20.4 Deflection of open and closed section beams

Bending, shear and torsional deflections of thin-walled beams are readily obtained by

application of the unit load method described in Section 5.5.

The displacement in a given direction due to torsion is given directly by the last of

Eqs (5.21), thus

�T =

∫

L

T0T1

GJ
dz (20.14)

where J , the torsion constant, depends on the type of beam under consideration. For an

open section beam J is given by either of Eqs (18.11) whereas in the case of a closed

section beam J = 4A2/(
∮

ds/t) (Eq. (18.4)) for a constant shear modulus.

Expressions for the bending and shear displacements of unsymmetrical thin-walled

beams may also be determined by the unit load method. They are complex for the

general case and are most easily derived from first principles by considering the com-

plementary energy of the elastic body in terms of stresses and strains rather than loads

and displacements. In Chapter 5 we observed that the theorem of the principle of the

stationary value of the total complementary energy of an elastic system is equivalent

to the application of the principle of virtual work where virtual forces act through real

displacements.Wemay therefore specify that in our expression for total complementary

energy the displacements are the actual displacements produced by the applied loads

while the virtual force system is the unit load.

Considering deflections due to bending, we see, from Eq. (5.6), that the increment

in total complementary energy due to the application of a virtual unit load is

−

∫

L

(∫

A

σz,1εz,0 dA

)

dz + 1�M

where σz,1 is the direct bending stress at any point in the beam cross-section correspond-

ing to the unit load and εz,0 is the strain at the point produced by the actual loading

system. Further, �M is the actual displacement due to bending at the point of applica-

tion and in the direction of the unit load. Since the system is in equilibrium under the

action of the unit load the above expression must equal zero (see Eq. (5.6)). Hence

�M =

∫

L

(∫

A

σz,1εz,0 dA

)

dz (20.15)

From Eq. (16.18) and the third of Eqs (1.42)

σz,1 =

(

My,1Ixx − Mx,1Ixy

IxxIyy − I2xy

)

x +

(

Mx,1Iyy − My,1Ixy

IxxIyy − I2xy

)

y

εz,0 =
1

E

[(

My,0Ixx − Mx,0Ixy

IxxIyy − I2xy

)

x +

(

Mx,0Iyy − My,0Ixy

IxxIyy − I2xy

)

y

]

where the suffixes 1 and 0 refer to the unit and actual loading systems and x, y are

the coordinates of any point in the cross-section referred to a centroidal system of
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axes. Substituting for σz,1 and εz,0 in Eq. (20.15) and remembering that
∫

A
x2 dA= Iyy,

∫

A
y2 dA= Ixx, and

∫

A
xy dA= Ixy, we have

�M =
1

E(IxxIyy − I2xy)
2

∫

L

{(My,1Ixx − Mx,1Ixy)(My,0Ixx − Mx,0Ixy)Iyy

+ (Mx,1Iyy − My,1Ixy)(Mx,0Iyy − My,0Ixy)Ixx

+ [(My,1Ixx − Mx,1Ixy)(Mx,0Iyy − My,0Ixy)

+ (Mx,1Iyy − My,1Ixy)(My,0Ixx − Mx,0Ixy)]Ixy}dz (20.16)

For a section having either the x or y axis as an axis of symmetry, Ixy = 0 and Eq. (20.16)

reduces to

�M =
1

E

∫

L

(

My,1My,0

Iyy
+

Mx,1Mx,0

Ixx

)

dz (20.17)

The derivation of an expression for the shear deflection of thin-walled sections by the

unit load method is achieved in a similar manner. By comparison with Eq. (20.15) we

deduce that the deflection�S , due to shear of a thin-walled open or closed section beam

of thickness t, is given by

�S =

∫

L

(∫

sect

τ1γ0t ds

)

dz (20.18)

where τ1 is the shear stress at an arbitrary point s around the section produced by a

unit load applied at the point and in the direction �S , and γ0 is the shear strain at the

arbitrary point corresponding to the actual loading system. The integral in parentheses

is taken over all the walls of the beam. In fact, both the applied and unit shear loads

must act through the shear centre of the cross-section, otherwise additional torsional

displacements occur. Where shear loads act at other points these must be replaced by

shear loads at the shear centre plus a torque. The thickness t is the actual skin thickness

and may vary around the cross-section but is assumed to be constant along the length

of the beam. Rewriting Eq. (20.18) in terms of shear flows q1 and q0, we obtain

�S =

∫

L

(∫

sect

q0q1

Gt
ds

)

dz (20.19)

where again the suffixes refer to the actual and unit loading systems. In the cases of both

open and closed section beams the general expressions for shear flow are long and are

best evaluated before substituting in Eq. (20.19). For an open section beam comprising

booms and walls of direct stress carrying thickness tD we have, from Eq. (20.6)

q0 = −

(

Sx,0Ixx − Sy,0Ixy

IxxIyy − I2xy

) (

∫ s

0

tDx ds +

n
∑

r=1

Brxr

)

−

(

Sy,0Iyy − Sx,0Ixy

IxxIyy − I2xy

) (

∫ s

0

tDy ds +

n
∑

r=1

Bryr

)

(20.20)
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and

q1 = −

(

Sx,1Ixx − Sy,1Ixy

IxxIyy − I2xy

) (

∫ s

0

tDx ds +

n
∑

r=1

Brxr

)

−

(

Sy,1Iyy − Sx,1Ixy

IxxIyy − I2xy

) (

∫ s

0

tDy ds +

n
∑

r=1

Bryr

)

(20.21)

Similar expressions are obtained for a closed section beam from Eq. (20.11).

Example 20.5
Calculate the deflection of the free end of a cantilever 2000mm long having a channel

section identical to that in Example 20.3 and supporting a vertical, upward load of

4.8 kN acting through the shear centre of the section. The effective direct stress carrying

thickness of the skin is zero while its actual thickness is 1mm.Young’s modulus E and

the shear modulus G are 70 000 and 30 000N/mm2, respectively.

The section is doubly symmetrical (i.e. the direct stress carrying area) and supports

a vertical load producing a vertical deflection. Thus we apply a unit load through the

shear centre of the section at the tip of the cantilever and in the same direction as the

applied load. Since the load is applied through the shear centre there is no twisting

of the section and the total deflection is given, from Eqs (20.17), (20.19), (20.20) and

(20.21), by

� =

∫ L

0

Mx,0Mx,1

EIxx
dz +

∫ L

0

(∫

sect

q0q1

Gt
ds

)

dz (i)

where Mx,0 = −4.8× 103(2000− z), Mx,1 = −1(2000− z)

q0 = −
4.8 × 103

Ixx

n
∑

r=1

Bryr q1 = −
1

Ixx

n
∑

r=1

Bryr

and z is measured from the built-in end of the cantilever. The actual shear flow dis-

tribution has been calculated in Example 20.3. In this case the q1 shear flows may be

deduced from the actual distribution shown in Fig. 20.8, i.e.

q1 = q0/4.8 × 103

Evaluating the bending deflection, we have

�M =

∫ 2000

0

4.8 × 103(2000 − z)2dz

70 000 × 48 × 106
= 3.81mm

The shear deflection �S is given by

�S =

∫ 2000

0

1

30 000 × 1

[

1

4.8 × 103
(62 × 200 + 122 × 400 + 62 × 200)

]

dz

= 1.0mm

The total deflection � is then �M + �S = 4.81mm in a vertical upward direction.
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Problems

P.20.1 Idealize the box section shown in Fig. P.20.1 into an arrangement of direct

stress carrying booms positioned at the four corners and panels which are assumed to

carry only shear stresses. Hence determine the distance of the shear centre from the

left-hand web.

Ans. 225mm.

10 mm

10 mm

Angles
 60 � 50 � 10mm

Angles
50 � 40 � 8 mm

10 mm

500 mm

8 mm

300 mm

Fig. P.20.1

P.20.2 The beam section shown in Fig. P.20.2 has been idealized into an arrange-

ment of direct stress carrying booms and shear stress only carrying panels. If the beam

section is subjected to a vertical shear load of 1495N through its shear centre, booms

1, 4, 5 and 8 each have an area of 200mm2 and booms 2, 3, 6 and 7 each have an area

of 250mm2 determine the shear flow distribution and the position of the shear centre.

Ans. Wall 12, 1.86N/mm; 43, 1.49N/mm; 32, 5.21N/mm; 27, 10.79N/mm;

remaining distribution follows from symmetry. 122mm to the left of the web 27.

50 mm

50 mm 40 mm
80 mm

80 mm
40 mm

150mm 150 mm200 mm

8

7 6

5

4

32

1

Fig. P.20.2
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P.20.3 Figure P.20.3 shows the cross-section of a single cell, thin-walled beamwith

a horizontal axis of symmetry. The direct stresses are carried by the booms B1 to B4,

while the walls are effective only in carrying shear stresses. Assuming that the basic

theory of bending is applicable, calculate the position of the shear centre S. The shear

modulus G is the same for all walls.

Cell area= 135 000mm2. Boom areas: B1 =B4 = 450mm2, B2 =B3 = 550mm2.

Ans. 197.2mm from vertical through booms 2 and 3.

Fig. P.20.3

Wall Length (mm) Thickness (mm)

12, 34 500 0.8

23 580 1.0

41 200 1.2

P.20.4 Find the position of the shear centre of the rectangular four boom beam

section shown in Fig. P.20.4. The booms carry only direct stresses but the skin is

fully effective in carrying both shear and direct stress. The area of each boom is

100mm2.

Ans. 142.5mm from side 23.

Fig. P.20.4
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P.20.5 A uniform beam with the cross-section shown in Fig. P.20.5(a) is supported

and loaded as shown in Fig. P.20.5(b). If the direct and shear stresses are given by the

basic theory of bending, the direct stresses being carried by the booms and the shear

stresses by the walls, calculate the vertical deflection at the ends of the beam when the

loads act through the shear centres of the end cross-sections, allowing for the effect of

shear strains.

TakeE = 69 000N/mm2 andG= 26 700N/mm2. Boom areas: 1, 3, 4, 6 = 650mm2,

2, 5 = 1300mm2.

Ans. 3.4mm.

Fig. P.20.5

P.20.6 A cantilever, length L, has a hollow cross-section in the form of a

doubly symmetric wedge as shown in Fig. P.20.6. The chord line is of length c,

wedge thickness is t, the length of a sloping side is a/2 and the wall thickness is

constant and equal to t0. Uniform pressure distributions of magnitudes shown act on

the faces of the wedge. Find the vertical deflection of point A due to this given load-

ing. If G= 0.4E, t/c= 0.05 and L= 2c show that this deflection is approximately

5600p0c
2/Et0.
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Fig. P.20.6

P.20.7 A rectangular section thin-walled beam of length L and breadth 3b, depth b

and wall thickness t is built in at one end (Fig. P.20.7). The upper surface of the beam

is subjected to a pressure which varies linearly across the breadth from a value p0 at

edge AB to zero at edge CD. Thus, at any given value of x the pressure is constant in

the z direction. Find the vertical deflection of point A.

Fig. P.20.7

Ans. p0L
2(9L2/80Eb2 + 1609/2000G)/t.
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Closed section beams

The analysis presented in Chapters 16–20 relies on elementary theory for the deter-

mination of stresses and displacements produced by axial loads, shear forces and

bending moments and torsion. No allowance is made for the effects of restrained warp-

ing produced by structural or loading discontinuities in the torsion of open or closed

section beams, or for the effects of shear strains on the calculation of direct and shear

stresses in beams subjected to bending and shear.

In this chapterwe shall examine some relatively simple examples of the above effects;

more complex cases require analysis by computer-based techniques such as the finite

element method.

26.1 General aspects

Structural constraint stresses in either closed or open beams result from a restriction

on the freedom of any section of the beam to assume its normal displaced shape under

load. Such a restriction arises when one end of the beam is built-in although the same

effect may be produced practically, in a variety of ways. For example, the root section

of a beam subjected to torsion is completely restrained from warping into the displaced

shape indicated by Eq. (18.5) and a longitudinal stress system is induced which, in a

special case discussed later, is proportional to the free warping of the beam.

A slightly different situation arises when the beam supports shear loads. The stress

system predicted by elementary bending theory relies on the basic assumption of plane

sections remaining plane after bending. However, for a box beam comprising thin

skins and booms, the shear strains in the skins are of sufficient magnitude to cause

a measurable redistribution of direct load in the booms and hence previously plane

sections warp. We shall discuss the phenomenon of load redistribution resulting from

shear, known as shear lag, in detail later in the chapter. The prevention of this warping

by some form of axial constraint modifies the stress system still further.

The most comprehensive analysis yet published of multi-cell and single cell beams

under arbitrary loading and support conditions is that by Argyris and Dunne.1 Their

work concentrates in the main on beams of idealized cross-section and while the theory

they present is in advance of that required here, it is beneficial to examine some of

the results of their analysis. We shall limit the present discussion to closed beams of

idealized cross-section.
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The problem of axial constraint may be conveniently divided into two parts. In the

first, the shear stress distribution due to an arbitrary loading is calculated exclusively

at the built-in end of the beam. In the second, the stress (and/or load) distributions are

calculated along the length of the beam for the separate loading cases of torsion and

shear. Obviously the shear stress systems predicted by each portion of theory must be

compatible at the built-in end.

Argyris and Dunne showed that the calculation of the shear stress distribution at a

built-in end is a relatively simple problem, the solution being obtained for any loading

and beam cross-section by statics. More complex is the determination of the stress

distributions at sections along the beam. These stresses, for the torsion case, are shown

to be the sum of the stresses predicted by elementary theory and stresses caused by

systems of self-equilibrating end loads. For a beam supporting shear loads the total

stresses are again the sum of those corresponding to elementary bending theory and

stresses due to systems of self-equilibrating end loads.

For an n-boom, idealized beam, Argyris and Dunne found that there are n− 3 self-

equilibrating end load, or eigenload, systems required to nullify n− 3 possible modes

of warping displacement. These eigenloads are analogous to, say, the buckling loads

corresponding to the different buckled shapes of an elastic strut. The fact that, generally,

there are a number of warping displacements possible in an idealized beam invalidates

the use of the shear centre or flexural axis as a means of separating torsion and shear

loads. For, associatedwith eachwarping displacement is an axis of twist that is different

for each warping mode. In practice, a good approximation is obtained if the torsion

loads are referred to the axis of twist corresponding to the lowest eigenload. Transverse

loads through this axis, the zero warping axis produce nowarping due to twist, although

axial constraint stresses due to shear will still be present.

In the special case of a doubly symmetrical section the problem of separating the

torsion and bending loads does not arise since it is obvious that the torsion loads

may be referred to the axis of symmetry. Double symmetry has the further effect

of dividing the eigenloads into four separate groups corresponding to (n/4)− 1 pure

flexural modes in each of the xz and yz planes, (n/4) pure twisting modes about the

centre of symmetry and (n/4)− 1 pure warping modes which involve neither flexure

nor twisting. A doubly symmetrical six boom beam supporting a single shear load has

therefore just one eigenload system if the centre boom in the top and bottom panels

is regarded as being divided equally on either side of the axis of symmetry thereby

converting it, in effect, into an eight boom beam.

It will be obvious from the above that, generally, the self-equilibrating stress systems

cannot be proportional to the free warping of the beam unless the free warping can be

nullified by just one eigenload system. This is true only for the four boom beam which,

from the above, has one possible warping displacement. If, in addition, the beam is

doubly symmetrical then its axis of twist will pass through the centre of symmetry. We

note that only in cases of doubly symmetrical beams do the zero warping and flexural

axes coincide.

A further special case arises when the beam possesses the properties of a Neuber

beam (Section 18.1.2) which does not warp under torsion. The stresses in this case are

the elementary torsion theory stresses since no constraint effects are present. When

bending loads predominate, however, it is generally impossible to design an efficient

structure which does not warp.
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In this chapter the calculation of spanwise stress distributions in closed section

beams is limited to simple cases of beams having doubly symmetrical cross-sections.

It should be noted that simplifications of this type can be misleading in that some of

the essential characteristics of beam analysis, for example the existence of the n− 3

self-equilibrating end load systems, vanish.

26.2 Shear stress distribution at a built-in end of a
closed section beam

This special case of structural constraint is of interest due to the fact that the shear

stress distribution at the built-in end of a closed section beam is statically determinate.

Figure 26.1 represents the cross-section of a thin-walled closed section beam at its

built-in end. It is immaterial for this analysis whether or not the section is idealized

since the expression for shear flow in Eq. (17.19), on which the solution is based, is

applicable to either case. The beam supports shear loads Sx and Sy which generally

will produce torsion in addition to shear. We again assume that the cross-section of the

beam remains undistorted by the applied loads so that the displacement of the beam

cross-section is completely defined by the displacements u, v, w and the rotation θ

referred to an arbitrary system of axes Oxy. The shear flow q at any section of the beam

is then given by Eq. (17.20), that is

q = Gt

(

p
dθ

dz
+

du

dz
cosψ +

dv

dz
sinψ +

∂w

∂s

)

At the built-in end, ∂w/∂s is zero and hence

q = Gt

(

p
dθ

dz
+

du

dz
cosψ +

dv

dz
sinψ

)

(26.1)

Fig. 26.1 Cross-section of a thin-walled beam at the built-in end.
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inwhich dθ/dz, du/dz and dv/dz are the unknowns, the remaining terms being functions

of the section geometry.

The resultants of the internal shear flows qmust be statically equivalent to the applied

loading, so that

∮

q cosψ ds = Sx

∮

q sinψ ds = Sy

∮

qp ds = Syξ0 − Sxη0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(26.2)

Substitution for q from Eq. (26.1) in Eqs (26.2) yields

dθ

dz

∮

tp cosψ ds +
du

dz

∮

t cos2 ψ ds +
dv

dz

∮

t cosψ sinψ ds =
Sx

G

dθ

dz

∮

tp sinψ ds +
du

dz

∮

t sinψ cosψ ds +
dv

dz

∮

t sin2 ψ ds =
Sy

G

dθ

dz

∮

tp2 ds +
du

dz

∮

tp cosψ ds +
dv

dz

∮

tp sinψ ds =
(Syξ0 − Sxη0)

G

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(26.3)

Equations (26.3) are solved simultaneously for dθ/dz, du/dz and dv/dz. These values

are then substituted in Eq. (26.1) to obtain the shear flow, and hence the shear stress

distribution.

Attention must be paid to the signs of ψ, p and q in Eqs (26.3). Positive directions

for each parameter are suggested in Fig. 26.1 although alternative conventions may be

adopted. In general, however, there are ruleswhichmust be obeyed, these having special

importance in the solution of multicell beams. Briefly, these are as follows. The positive

directions of q and s are the same but may be assigned arbitrarily in each wall. Then p

is positive if movement of the foot of the perpendicular along the positive direction of

the tangent leads to an anticlockwise rotation of p about O. ψ is the clockwise rotation

of the tangent vector necessary to bring it into coincidence with the positive direction

of the x axis.

Example 26.1
Calculate the shear stress distribution at the built-in end of the beam shown in Fig.

26.2(a) when, at this section, it carries a shear load of 22 000N acting at a distance of

100mm from and parallel to side 12. The modulus of rigidity G is constant throughout

the section:

Wall 12 34 23

Length (mm) 375 125 500

It is helpful at the start of the problem to sketch the notation and sign convention as

shown in Fig. 26.2(b). The walls of the beam are flat and therefore p andψ are constant

along each wall. Also the thickness of each wall is constant so that the shear flow q

is independent of s in each wall. Let point 1 be the origin of the axes, then, writing
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Fig. 26.2 (a) Beam cross-section at built-in end; (b) notation and sign convention.

θ′ = dθ/dz, u′ = du/dz and v′ = dv/dz, we obtain from Eq. (26.1)

q12 = 1.6Gv′ (i)

q23 = 1.0G(375 × 0.886θ′
− 0.886u′

− 0.5v′) (ii)

q34 = 1.2G(500 × 0.866θ′
− v′) (iii)

q41 = 1.0Gu′ (iv)

For horizontal equilibrium

500 × 0.886q41 − 500 × 0.886q23 = 0

giving

q41 = q23 (v)

For vertical equilibrium

375q12 − 125q34 − 250q23 = 22 000 (vi)

For moment equilibrium about point 1

500 × 375 × 0.886q23 + 125 × 500 × 0.886q34 = 22 000 × 100

or

3q23 + q34 = 40.6 (vii)

Substituting for q12, etc. from Eqs (i), (ii), (iii) and (iv) into Eqs (v), (vi) and (vii), and

solving for θ′, u′ and v′, gives θ′ = 0.122/G, u′ = 9.71/G, v′ = 42.9/G. The values of

θ′, u′ and v′ are now inserted in Eqs (i), (ii), (iii) and (iv), giving q12 = 68.5N/mm,

q23 = 9.8N/mm, q34 = 11.9N/mm, q41 = 9.8N/mm from which

τ12 = 42.8N/mm2 τ23 = τ41 = 9.8N/mm2 τ34 = 9.9N/mm2
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Fig. 26.3 Built-in end of a beam section having a curved wall.

We note in Example 26.1 that there is a discontinuity of shear flow at each of the corners

of the beam. This implies the existence of axial loads at the corners which would, in

practice, be resisted by booms, if stress concentrations are to be avoided. We see also

that in a beam having straight walls the shear flows are constant along each wall so that,

from Eq. (17.2), the direct stress gradient ∂σz/∂z= 0 in the walls at the built-in end

although not necessarily in the booms. Finally, the centre of twist of the beam section

at the built-in end may be found using Eq. (17.11), i.e.

xR = −
v′

θ′
yR =

u′

θ′

which, from the results of Example 26.1, give xR = −351.6mm, yR = 79.6mm. Thus,

the centre of twist is 351.6mm to the left of and 79.6mm above corner 1 of the section

and will not, as we noted in Section 26.1, coincide with the shear centre of the section.

The method of analysis of beam sections having curved walls is similar to that of

Example 26.1 except that in the curved walls the shear flow will not be constant since

both p andψ in Eq. (26.1) will generally vary. Consider the beam section shown in Fig.

26.3 in which the curved wall 23 is semicircular and of radius r. In the wall 23, p= r

and ψ = 180+ φ, so that Eq. (26.1) gives

q23 = Gt(rθ′
− u′ cosφ − v′ sin φ)

The resultants of q23 are then

Horizontally :

∫ π

0

q23 cosφr dφ

Vertically :

∫ π

0

q23 sin φr dφ

Moment (about 0) :

∫ π

0

q23r
2 dφ

The shear flows in the remaining walls are constant and the solution proceeds as

before.
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1

2R

2R

q41

q34

q12

q23

20 kN

2

R

O

φ

34

Fig. 26.4 Beam section of Example 26.2.

Example 26.2
Determine the shear flow distribution at the built-in end of a beam whose cross-section

is shown in Fig. 26.4. All walls have the same thickness t and shear modulus G;

R= 200mm.

In general at a built-in end (see Eq (26.1))

q = Gt

(

p
dθ

dz
+

du

dz
cosψ +

dv

dz
sinψ

)

Therefore, taking O as the origin and writing θ′ = dθ/dz, u′ = du/dz and v′ = dv/dz

q41 = Gt(−2Rθ′
+ v′) (i)

q12 = Gt(−Rθ′
+ u′) (ii)

q34 = Gt(−Rθ′
− u′) (iii)

q23 = Gt(−Rθ′
+ u′ cosφ − v′ sin φ) (iv)

From symmetry

q12 = q34

i.e.

Gt(−Rθ′
+ u′) = Gt(−Rθ′

− u′)

Therefore

u′
= 0

Resolving vertically

q412R −

∫ π

0

q23 sin φ R dφ = 20 × 103
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i.e.

q41 −
1

2

∫ π

0

q23 sin φ dφ =
10 000

R

Substituting from Eqs (i) and (iv) gives

−Rθ′
+ 1.79v′

=
10 000

GtR
(v)

Now taking moments about O

q41 2R 2R + q12 2RR + q34 2RR +

∫ π

0

q23 R
2dφ = 20 000 × 2R

which gives

2q41 + q12 + q34 +
1

2

∫ π

0

q23 dφ =
20 000

R

Substituting from Eqs (i), (ii), (iii) and (iv)

2Gt(−2Rθ′
+ v′) − 2GtRθ′

+
Gt

2

∫ π

0

(−Rθ′
− v′sinφ) dφ =

20 000

R

from which

Rθ′
− 0.13v′

= −
2641.7

GtR
(vi)

Solving Eqs (v) and (vi)

v′
=

4432.7

GtR
, Rθ′

= −
2065.4

GtR

Therefore

q41 = Gt

(

2 × 2065.4

200Gt
+

4432.7

200Gt

)

= 42.8N/mm

Similarly

q12 = q34 = 10.3N/mm

Finally

q23 = 10.3 − 22.2 sin φN/mm
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26.3 Thin-walled rectangular section beam subjected
to torsion

In Example 18.2 we determined the warping distribution in a thin-walled rectangular

section beam which was not subjected to structural constraint. This free warping distri-

bution (w0) was found to be linear around a cross-section and uniform along the length

of the beam having values at the corners of

w0 = ±
T

8abG

(

b

tb
−

a

ta

)

The effect of structural constraint, such as building one end of the beam in, is to reduce

this free warping to zero at the built-in section so that direct stresses are induced which

subsequently modify the shear stresses predicted by elementary torsion theory. These

direct stresses must be self-equilibrating since the applied load is a pure torque.

The analysis of a rectangular section beam built-in at one end and subjected to a

pure torque at the other is simplified if the section is idealized into one comprising

four corner booms which are assumed to carry all the direct stresses together with

shear–stress-only carrying walls. The assumption on which the idealization is based

is that the direct stress distribution at any cross-section is directly proportional to the

warping which has been suppressed. Therefore, the distribution of direct stress is linear

around any cross-section and has values equal in magnitude but opposite in sign at

opposite corners of a wall. This applies at all cross-sections since the free warping will

be suppressed to some extent along the complete length of the beam. In Fig. 26.5(b) all

the booms will have the same cross-sectional area from anti-symmetry and, from Eq.

(20.1) or (20.2)

B =
ata

6
(2 − 1) +

btb

6
(2 − 1) =

1

6
(ata + btb)

To the boom area B will be added existing concentrations of area such as connecting

angle sections at the corners. The contributions of stringersmay be included by allowing

for their direct stress carrying capacity by increasing the actual wall thickness by an

amount equal to the total stringer area on one wall before idealizing the section.

We have seen in Chapter 20 that the effect of structural idealization is to reduce

the shear flow in the walls of a beam to a constant value between adjacent booms.

Fig. 26.5 Idealization of a rectangular section beam subjected to torsion: (a) actual; (b) idealized.
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Fig. 26.6 ldealized rectangular section beam built-in at one end and subjected to a torque at the other.

In Fig. 26.6 suppose that the shear flows in the covers and webs at any section are qa
and qb, respectively; from antisymmetry the shear flows in both covers will be qa and

in both webs qb. The resultant of these shear flows is equivalent to the applied torque

so that

T =

∮

qp ds = 2qaa
b

2
+ 2qbb

a

2

or

T = ab(qa + qb) (26.4)

We now use Eq. (17.19), i.e.

q = Gt

(

∂w

∂s
+

∂v

∂z

)

to determine qa and qb. Since the beam cross-section is doubly symmetrical the axis of

twist passes through the centre of symmetry at any section so that, from Eq. (17.8)

∂vt

∂z
= pR

dθ

dz
(26.5)

Therefore for the covers of the beam

∂vt

∂z
=

b

2

dθ

dz
(26.6)

and for the webs

∂vt

∂z
=

a

2

dθ

dz
(26.7)
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Fig. 26.7 Shear distortion of (a) an element of the top cover; (b) an element of the right hand web.

The elements of length δz of the covers and webs of the beam will warp into the shapes

shown in Fig. 26.6 if T is positive (anticlockwise) and b/tb > a/ta. Clearly there must

be compatibility of displacement at adjacent edges of the elements. From Fig. 26.7(a)

∂w

∂s
=

−w

a/2
(26.8)

and from Fig. 26.7(b)

∂w

∂s
=

w

b/2
(26.9)

Substituting for ∂w/∂s and ∂vt/∂z in Eq. (17.19) separately for the covers and webs,

we obtain

qa = Gta

(

−2w

a
+

b

2

dθ

dz

)

qb = Gtb

(

2w

b
+

a

2

dθ

dz

)

(26.10)

Now substituting for qa and qb in Eq. (26.4) we have

T = abG

[

ta

(

−2w

a
+

b

2

dθ

dz

)

+ tb

(

2w

b
+

a

2

dθ

dz

)]

Rearranging

dθ

dz
=

4w(bta − atb)

ab(bta + atb)
+

2T

abG(bta + atb)
(26.11)

If we now substitute for dθ/dz from Eq. (26.11) into Eqs (26.10) we have

qa =
−4wGtbta

bta + atb
+

Tta

a(bta + atb)
qb =

4wGtbta

bta + atb
+

Ttb

b(bta + atb)
(26.12)

Equations (26.11) and (26.12) give the rate of twist and the shear flows (and hence shear

stresses) in the beam in terms of thewarpingw and the applied torqueT . Their derivation

is based on the compatibility of displacement which exists at the cover/boom/web
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Fig. 26.8 Equilibrium of boom element.

junctions. We shall now use the further condition of equilibrium between the shears

in the covers and webs and the direct load in the booms to obtain expressions for the

warping displacement and the distributions of boom stress and load. Thus, for the

equilibrium of an element of the top right-hand boom shown in Fig. 26.8
(

σz +
∂σz

∂z
δz

)

B − σzB + qaδz − qbδz = 0

i.e.

B
∂σz

∂z
+ qa − qb = 0 (26.13)

Now

σz = E
∂w

∂z
(see Chapter 1)

Substituting for σz in Eq. (26.13) we obtain

BE
∂2w

∂z2
+ qa − qb = 0 (26.14)

Replacing qa and qb from Eqs (26.12) gives

BE
∂2w

∂z2
−

8Gtbta

bta + atb
w = −

T

ab

(bta − atb)

(bta + atb)

or

∂2w

∂z2
− µ2w = −

T

abBE

(bta − atb)

(bta + atb)
(26.15)
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where

µ2
=

8Gtbta

BE(bta + atb)

The differential equation (26.15) is of standard form and its solution is

w = C coshµz + D sinhµz +
T

8abG

(

b

tb
−

a

ta

)

(26.16)

in which the last term is seen to be the free warping displacement w0 of the top right-

hand corner boom. The constants C and D in Eq. (26.16) are found from the boundary

conditions of the beam. In this particular case the warping w = 0 at the built-in end and

the direct strain ∂w/∂z= 0 at the free end where there is no direct load. From the first

of these

C = −
T

8abG

(

b

tb
−

a

ta

)

= −w0

and from the second

D = w0 tanhµL

Then

w = w0(1 − coshµz + tanhµL sinhµz) (26.17)

or rearranging

w = w0

[

1 −
coshµ(L − z)

coshµL

]

(26.18)

The variation of direct stress in the boom is obtained from σz =E∂w/∂z and Eq. (26.18),

i.e.

σz = µEw0
sinhµ(L − z)

coshµL
(26.19)

and the variation of boom load P is then

P = Bσz = BµEwo
sinhµ(L − z)

coshµL
(26.20)

Substituting forw in Eqs (26.12) and rearranging, we obtain the shear stress distribution

in the covers and webs. Thus

τa =
qa

ta
=

T

2abta

[

1 +
(bta − atb)

(bta + atb)

coshµ(L − z)

coshµL

]

(26.21)

τb =
qb

tb
=

T

2abtb

[

1 −
(bta − atb)

(bta + atb)

coshµ(L − z)

coshµL

]

(26.22)

Inspection of Eqs (26.21) and (26.22) shows that the shear stress distributions each

comprise two parts. The first terms, T/2abta and T/2abtb, are the shear stresses pre-

dicted by elementary theory (see Section 18.1), while the hyperbolic second terms
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Fig. 26.9 Shear stress distributions along the beam of Fig. 11.5.

represent the effects of the warping restraint. Clearly, for an anticlockwise torque and

bta > atb, the effect of this constraint is to increase the shear stress in the covers over

that predicted by elementary theory and decrease the shear stress in the webs. It may

also be noted that for bta to be greater than atb for the beam of Fig. 26.6, in which

a> b, then ta must be appreciably greater than tb so that T/2abta <T/2abtb. Also

at the built-in end (z= 0), Eqs (26.21) and (26.22) reduce to τa =T/a(bta + atb) and

τb =T/b(bta + atb) so that even though τb is reduced by the axial constraint and τa
increased, τb is still greater than τa. It should also be noted that these values of τa and

τb at the built-in end may be obtained using the method of Section 26.2 and that these

are the values of shear stress irrespective of whether the section has been idealized or

not. In other words, the presence of intermediate stringers and/or direct stress carrying

walls does not affect the shear flows at the built-in end since the direct stress gradient

at this section is zero (see Section 26.2 and Eq. (17.2)) except in the corner booms.

Finally, when both z and L become large, i.e. at the free end of a long, slender beam

τa →
T

2abta
and τb →

T

2abtb

The above situation is shown in Fig. 26.9.

In the particular case when bta = atb we see that the second terms on the right-hand

side of Eqs (26.21) and (26.22) disappear and no constraint effects are present; the

direct stress of Eqs (26.19) is also zero since w0 = 0 (see Example 18.2).

The rate of twist is obtained by substituting for w from Eq. (26.18) in Eq. (26.11).

Thus

dθ

dz
=

T

2a2b2G

(

b

tb
+

a

ta

)

[

1 −

(

bta − atb

bta + atb

)2
coshµ(L − z)

coshµL

]

(26.23)

in which we see that again the expression on the right-hand side comprises the rate of

twist given by elementary theory, T (b/tb + a/ta)/2a
2b2G (see Section 18.1), together

with a correction due to the warping restraint. Clearly the rate of twist is always reduced

by the constraint since (bta − atb)
2 is always positive. Integration of Eq. (26.23) gives

the distribution of angle of twist along the length of the beam, the boundary condition

in this case being θ = 0 at z= 0.
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Example 26.3
A uniform four boom box of span 5m is 500mm wide by 20mm deep and has four

corner booms each of cross-sectional area 800mm2, its wall thickness is 1.0mm. If

the box is subjected to a uniformly distributed torque loading of 20Nm/mm along its

length and it is supported at each end such that complete freedom of warping exists

at the end cross-sections calculate the angle of twist at the mid-span section. Take

G= 20 000N/mm2 and G/E = 0.36.

The reactive torques at each support are= 20× 5000/2= 50 000Nm

Taking the origin for z at the mid-span of the beam the torque at any section is

given by

T (z) = 20(2500 − z) − 50 000 = −20zNm

Substituting in Eq. (26.16) we obtain

w = C coshµz + D sinhµz −
20z × 103(b − a)

8abGt

The boundary conditions are:

w= 0 when z= 0 from symmetry and ∂w/∂z= 0 when z=L (L= 2500mm)

From the first of these C = 0 while from the second

D =
20 × 103(b − a)

8µabGt coshµL

Therefore

w =
20(b − a) × 103

8abGt

(

sinhµz

µ coshµL
− z

)

(i)

Further

µ2
=

8Gt

AE(b + a)
=

8 × 0.36 × 1.0

800(200 + 500)
= 5.14 × 10−6

so that Eq. (i) becomes

w = −3.75 × 10−4(3.04 sinhµz − z) (ii)

Substituting for w, etc. in Eq. (26.11)

dθ

dz
= 10−8(1.95 sinhµz − 3.49z)

Hence

θ = 10−8

(

1.95

µ
coshµz − 1.75z2 + F

)

(iii)

When z=L (2500mm) θ = 0. Then, from Eq. (iii)

F = 10.8 × 106
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so that

θ = 10−8(859 coshµz − 1.75z2 + 10.8 × 106) (iv)

At mid-span where z= 0, from Eq. (iv)

θ = 0.108 rad or θ = 6.2◦

26.4 Shear lag

A problem closely related to the restrained torsion of rectangular section beams is that

generally known as shear lag. We have seen in Chapter 18 that torsion induces shear

stresses in the walls of beams and these cause shear strains which produce warping

of the cross-section. When this warping is restrained, direct stresses are set up which

modify the shear stresses. In a similar manner the shear strains in the thin walls of

beams subjected to shear loads cause cross-sections to distort or warp so that the basic

assumption of elementary bending theory of plane sections remaining plane is no longer

valid. The direct and shear stress distributions predicted by elementary theory therefore

become significantly inaccurate. Furthermodifications arisewhen any formof structural

constraint prevents the free displacement of the cross-sections of a beam. Generally,

shear lag becomes a problem in wide, relatively shallow, thin-walled beams such as

wings in which the shear distortion of the thin upper and lower surface skins causes

redistribution of stress in the stringers and spar caps while the thicker and shallower

spar webs experience little effect.

Consider the box beam shown in Fig. 26.10. Elementary bending theory predicts that

the direct stress at any sectionAAwould be uniformacross thewidth of the covers so that

the stringers and web flanges would all be subjected to the same stress. However, the

shear strains at the section cause the distortion shown so that the intermediate stringers

carry lower stresses than the web flanges. Since the resultant of the direct stresses must

Fig. 26.10 Shear distortion in the covers of a box beam.
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be equivalent to the applied bending moment this means that the direct stresses in the

web flanges must be greater than those predicted by elementary bending theory. Our

investigation of the shear lag problem will be restricted to idealized six- and eight-

boom doubly symmetrical rectangular section beams subjected to shear loads acting

in the plane of symmetry and in which the axis of twist, the flexural axis and the zero

warping axis coincide; the shear loads therefore produce no twist and hence no warping

due to twist. In the analysis we shall assume that the cross-sections of beams remain

undistorted in their own plane.

Figure 26.11 shows an idealized six-boom beam built-in at one end and carrying a

shear load at the other; the corner booms have a cross-sectional area Bwhile the central

booms have a cross-sectional area A. At any section the vertical shear load is shared

equally by the two webs. Also, since the beam has been idealized, the shear flow at

any section will be constant between the booms so that, for a web, the situation is

that shown in the free body diagram of Fig. 26.12, in addition, the corner booms are

subjected to equal and opposite loads PB. The complementary shear flows Sy/2h are

applied to the corner booms as shown so that the top cover, say, is subjected to loads as

shown in Fig. 26.13. We assume that suitable edge members are present at the free end

of the cover to equilibrate the shear flows; we also assume that strains in the transverse

direction are negligible.

It is advantageous to adopt a methodical approach in the analysis. Thus, use may

be made of the symmetry of the cover so that only one edge boom, one panel and

the central boom need to be considered as long as the symmetry is allowed for in the

assumed directions of the panel shear flows q, as shown in Fig. 26.13. Further, the

origin for z may be taken to be at either the free or built-in end. A marginally simpler

solution is obtained if the origin is taken to be at the free end, in which case the solution

represents that for an infinitely long panel. Considering the equilibrium of an element of

an edge boom (Fig. 26.14), in which we assume that the boom load is positive (tension)

Fig. 26.11 Six-boom beam subjected to a shear load.
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Fig. 26.12 Loads on webs and corner booms of the beam of Fig. 26.11.

Fig. 26.13 Top cover of the beam of Fig. 26.11.

and increases with increasing z, we have

PB +
∂PB

∂z
δz − PB − qδz +

Sy

2h
δz = 0

or

∂PB

∂z
− q +

Sy

2h
= 0 (26.24)

Similarly, for an element of the central boom (Fig. 26.15)

∂PA

∂z
+ 2q = 0 (26.25)
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Fig. 26.14 Equilibrium of boom element.

Fig. 26.15 Equilibrium of element of central boom.

Fig. 26.16 Equilibrium of a length z of cover.

Now considering the overall equilibrium of a length z of the cover (Fig. 26.16), we have

2PB + PA +
Sy

h
z = 0 (26.26)

We now consider the compatibility condition which exists in the displacements of

elements of the booms and adjacent elements of the panels. Figure 26.17(a) shows

the displacements of the cover and an element of a panel and the adjacent elements

of the boom. Note that the element of the panel is distorted in a manner which agrees

with the assumed directions of the shear flows in Fig. 26.13 and that the shear strain

increases with z. From Fig. 26.17(b)

(1 + εB)δz = (1 + εA)δz + d
∂γ

∂z
∂z
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Fig. 26.17 Compatibility condition.

in which εB and εA are the direct strains in the elements of boom. Then, rearranging

and noting that γ is a function of z only when the section is completely idealized, we

have

dγ

dz
=

1

d
(εB − εA) (26.27)

Now

εB =
PB

BE
εA =

PA

AE
γ =

q

Gt

so that Eq. (26.27) becomes

dq

dz
=

Gt

dE

(

PB

B
−

PA

A

)

(26.28)

We now select the unknown to be determined initially. Generally, it is simpler math-

ematically to determine either of the boom load distributions, PB or PA, rather than the

shear flow q. Thus, choosing PA, say, as the unknown, we substitute in Eq. (26.28) for

q from Eq. (11.25) and for PB from Eq. (26.26). Hence

−
1

2

∂2PA

∂z2
=

Gt

dE

(

−
PA

2B
−

Syz

2Bh
−

PA

A

)

Rearranging, we obtain

∂2PA

∂z2
−

Gt(2B + A)

dEAB
PA =

GtSyz

dEBh

or

∂2PA

∂z2
− λ2PA =

GtSyz

dEBh
(26.29)



26.4 Shear lag 699

in which λ2 =Gt(2B+A)/dEAB. The solution of Eq. (26.29) is of standard form

and is

PA = C cosh λz + D sinh λz −
SyA

h(2B + A)
z

The constants C and D are determined from the boundary conditions of the cover of

the beam namely, PA = 0 when z= 0 and γ = q/Gt = −(∂PA/∂z)/2Gt= 0 when z=L

(see Eq. (26.25)). From the first of these C = 0 and from the second

D =
SyA

λh(2B + A) cosh λL

Thus

PA = −
SyA

h(2B + A)

(

z −
sinh λz

λ cosh λL

)

(26.30)

The direct stress distribution σA(= PA/A) follows, i.e.

σA = −
Sy

h(2B + A)

(

z −
sinh λz

λ cosh λL

)

(26.31)

The distribution of load in the edge booms is obtained by substituting for PA from

Eq. (26.30) in Eq. (26.26), thus

PB = −
SyB

h(2B + A)

(

z +
A

2Bλ

sinh λz

cosh λL

)

(26.32)

whence

σB = −
Sy

h(2B + A)

(

z +
A

2Bλ

sinh λz

cosh λL

)

(26.33)

Finally, from either pairs of Eqs (26.25) and (26.30) or (26.24) and (26.32)

q =
SyA

2h(2B + A)

(

1 −
cosh λz

cosh λL

)

(26.34)

so that the shear stress distribution τ(=q/t) is

τ =
SyA

2ht(2B + A)

(

1 −
cosh λz

cosh λL

)

(26.35)

Elementary theory gives

σA = σB = −
Syz

h(2B + A)

and

q =
SyA

2h(2B + A)
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Fig. 26.18 Rectangular section beam supported at corner booms only.

so that, as in the case of the torsion of a four boom rectangular section beam, the solution

comprises terms corresponding to elementary theory together with terms representing

the effects of shear lag and structural constraint.

Manywing structures are splicedonly at the spars so that the intermediate stringers are

not subjected to bending stresses at the splice. The situation for a six boom rectangular

section beam is then as shown in Fig. 26.18. The analysis is carried out in an identical

manner to that in the previous case except that the boundary conditions for the central

stringer are PA = 0 when z= 0 and z=L. The solution is

PA = −
SyA

h(2B + A)

(

z − L
sinh λz

sinh λL

)

(26.36)

PB = −
SyB

h(2B + A)

(

z +
AL

2B

sinh λz

sinh λL

)

(26.37)

q =
SyA

2h(2B + A)

(

1 − λL
cosh λz

sinh λL

)

(26.38)

where λ2 =Gt(2B+A)/dEAB. Examination of Eq. (26.38) shows that q changes sign

when cosh λz= ( sinh λL)/λL, the solution of which gives a value of z less than L, i.e. q

changes sign at some point along the length of the beam. The displaced shape of the top

cover is therefore as shown in Fig. 26.19. Clearly, the final length of the central stringer

is greater than in the previous case and appreciably greater than the final length of the

spar flanges. The shear lag effect is therefore greater than before. In some instances

this may be beneficial since a larger portion of the applied bending moment is resisted

by the heavier section spar flanges. These are also restrained against buckling in two

directions by the webs and covers while the lighter section stringers are restrained in

one direction only. The beam is therefore able to withstand higher bending moments

than those calculated from elementary theory.
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Fig. 26.19 Displaced shape of top cover of box team of Fig. 26.18.

3 mm

2 mm

2 mm

3 mm
100 mm

600 mm

Fig. 26.20 Beam section of Example 26.4.

200 mm 200 mm 200 mm

1 2 3 4

8765

Fig. 26.21 Idealized beam section of Example 26.4.

Example 26.4
A shallow box section beam whose cross-section is shown in Fig. 26.20 is simply

supported over a span of 2m and carries a vertically downward load of 20 kN at mid-

span. Idealise the section into one suitable for shear lag analysis, comprising eight

booms, and hence determine the distribution of direct stress along the top right-hand

corner of the beam. Take G/E = 0.36.

The idealized section is shown in Fig. 26.21.

Using either Eqs (20.1) or (20.2)

B1 = B4 = B8 = B5 =
100 × 3

6
(2 − 1) +

200 × 2

6
(2 + 1) = 250mm2

B2 = B3 = B6 = B7 =
200 × 2

6
(2 + 1) × 2 = 400mm2
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Mid-span
50 N/mm

50 N/mm

250 mm2 (B)

250 mm2

1000 mm

400 mm2 (A) q = 0

d � 200 mm

d � 200 mm

d � 200 mmq

q

z

Fig. 26.22 Shear flows acting on top cover of idealized beam section of Example 26.4.

50 N/mm

q

dz

dzPB �
�PB 

�z
PB

Fig. 26.23 Element of boom B.

The support reactions of 10 kN produce loads of 5 kN on each vertical web. These, in

turn, produce shear flows of 50N/mm along each corner boom as shown in Fig. 26.22

for the top cover of the beam.

Considering the equilibrium of elements of the booms we have, for the top boom,

Fig. 26.23

PB +
∂PB

∂z
δz − PB + qδz + 50δz = 0

which gives

∂PB

∂z
= −q − 50 (i)

Similarly for an element of boomA

∂PA

∂z
= q (ii)

Overall equilibrium of a length z of the panel gives

2PB + 2PA + 2 × 50z = 0
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dz�
�z

(1�εB)dz

(1�εA)dz

�

d

�
��

Fig. 26.24 Compatibility condition for top cover of beam of Example 26.4.

i.e

PB + PA + 50z = 0 (iii)

The compatibility of displacement between elements of boom and adjacent panel,

Fig. 26.24 gives

∂γ

∂z
=

1

d
(εA − εB) (iv)

But

εA = PA/EA εB = PB/EB γ = q/Gt

Substituting in Eq. (iv) we obtain

∂q

∂z
=

Gt

dE

(

PA

A
−

PB

B

)

(v)

From Eq. (iii)

PA = −PB − 50z

From Eq. (i)

∂q

∂z
= −

∂2PB

∂z2

Substituting in Eq. (v)

∂2PB

∂z2
− µ2PB =

50Gt

dEA
z (vi)

in which

µ2
=

Gt

dE

(

A + B

AB

)
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The solution of Eq. (vi) is

PB = C coshµz + D sinhµz −
50B

A + B
z

The boundary conditions are;

when z = 0, PB = 0

and when z = 100mm
∂PB

∂z
= −50 (from Eq (i) since q = 0 at z = 1000mm)

From the first of these C = 0 while from the second

D =
−50A

(A + B)µ cosh 1000µ

Therefore

σB =
PB

B
=

−50A

B(A + B)µ cosh 1000µ
= sinhµz −

50

A + B
z

Substituting the boom areas, etc. gives

σB = −0.4 sinhµz − 0.08z

In certain situations beams, or parts of beams, carry loads which cause in-plane bending

of the covers. An example is shown in Fig. 26.25 where the loads P cause bending in

addition to axial effects. Shear lag modifies the stresses predicted by elementary theory

in a similar manner to the previous cases. From symmetry we can consider either the

Fig. 26.25 Beam subjected to combined bending and axial load.
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top or bottom cover in isolation as shown in Fig. 26.26(a). In this case the load P causes

bending as well as extension of the cover so that at any section z the beam has a slope

∂v/∂z (Fig. 26.26(b)). We shall again assume that transverse strains are negligible and

that the booms carry all the direct load.

Initially, as before, we choose directions for the shear flows in the top and bottom

panels. Any directions may be chosen since the question of symmetry does not arise.

The equilibrium of an element δz of each boom is first considered giving

∂PB1

∂z
= −q1

∂PA

∂z
= q1 − q2

∂PB2

∂z
= q2 (26.39)

where PB1 is the load in boom 1 and PB2 is the load in boom 2. Longitudinal and

moment equilibrium about boom 2 of a length z of the cover give, respectively

PB1 + PB2 + PA = P PB12d + PAd = P2d (26.40)

The compatibility condition now includes the effect of bending in addition to extension,

as shown in Fig. 26.27. Note that the panel is distorted in a manner which agrees with

the assumed direction of shear flow and that γ1 and ∂v/∂z increase with z. Thus

(1 + εA)δz = (1 + εB1)δz + d

(

dγ1

dz
+

d2v

dz2

)

δz

where γ1 and v are functions of z only. Thus

dγ1

dz
=

1

d
(εA − εB1) −

d2v

dz2
(26.41)

Similarly, for an element of the lower panel

dγ2

dz
=

1

d
(εB2 − εA) −

d2v

dz2
(26.42)

Fig. 26.26 Cover of beam of Fig. 11.19.
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Fig. 26.27 Compatibility condition for combined bending and axial load.

Subtraction of Eq. (26.42) from Eq. (26.41) eliminates d2v/dz2, i.e.

dγ1

dz
−

dγ2

dz
=

1

d
(2εA − εB1 − εB2)

or, as before

dq1

dz
−

dq2

dz
=

Gt

dE

(

2PA

A
−

PB1

B
−

PB2

B

)

(26.43)

In this particular problem the simplestmethodof solution is to choosePA as the unknown

since, from Eqs (26.39)

dq1

dz
−

dq2

dz
=

∂2PA

∂z2

Also substituting for PB1 and PB2 from Eq. (26.40), we obtain

∂2PA

∂z2
−

Gt

dE

(

2B + A

AB

)

PA = −
PGt

dEB

or

∂2PA

∂z2
− λ2PA = −

PGt

dEB
(26.44)

where λ2 =Gt(2B+A)/dEAB. The solution of Eq. (26.44) is of standard form and is

PA = C cosh λz + D sinh λz +
PA

2B + A
(26.45)
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The boundary conditions arePA = 0when z= 0 and q1 = q2 = 0= ∂PA/∂z at the built-in

end (no shear loads are applied). Hence

PA =
PA

2B + A
(1 − cosh λz + tanh λL sinh λz)

or, rearranging

PA =
PA

2B + A

[

1 −
cosh λ(L − z)

cosh λL

]

(26.46)

Hence

σA =
P

2B + A

[

1 −
cosh λ(L − z)

cosh λL

]

(26.47)

Substituting for PA in the second of Eqs (26.40), we have

PB1 =
PA

2(2B + A)

[

4B + A

A
+

cosh λ(L − z)

cosh λL

]

(26.48)

whence

σB1 =
PA

2B(2B + A)

[

4B + A

A
+

cosh λ(L − z)

cosh λL

]

(26.49)

Also from Eqs (26.40)

PB2 = −
PA

2

so that

PB2 =
−PA

2(2B + A)

[

1 −
cosh λ(L − z)

cosh λL

]

(26.50)

and

σB2 =
−PA

2B(2B + A)

[

1 −
cosh λ(L − z)

cosh λL

]

(26.51)

Finally, the shear flow distributions are obtained from Eqs (16.39), thus

q1 =
−∂PB1

∂z
=

PAλ

2(2B + A)

sinh λ(L − z)

cosh λL
(26.52)

q2 =
∂PB2

∂z
=

−PAλ

2(2B + A)

sinh λ(L − z)

cosh λL
(26.53)

Again we see that each expression for direct stress, Eqs (26.47), (26.49) and (26.51),

comprises a term which gives the solution from elementary theory together with a

correction for the shear lag effect. The shear flows q1 and q2 are self-equilibrating, as

can be seen from Eqs (26.52) and (26.53), and are entirely produced by the shear lag

effect (q1 and q2 must be self-equilibrating since no shear loads are applied).
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Example 26.5
The unsymmetrical panel shown in Fig. 26.28 comprises three direct stress carrying

booms and two shear stress carrying panels. If the panel supports a load P at its free

end and is pinned to supports at the ends of its outer booms determine the distribution

of direct load in the central boom. Determine also the load in the central boom when

A=B=C and shear lag effects are absent.

As before we consider the equilibrium of elements of the booms, say A and B. This

gives

∂PA

∂z
= −q1 (i)

and

∂PB

∂z
= q1 − q2 (ii)

For overall equilibrium of a length z of the panel

PA + PB + PC = P (iii)

and taking moments about boom C

2PA + PB = P (iv)

The compatibility condition is shown in Fig. 26.29 and gives

∂γ1

∂z
=

1

d
(εA − εA) −

∂2v

∂z2
(v)

z

P

d

d

L

A

B

C

q1

q2

Fig. 26.28 Panel of Example 26.5.
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(1�ε
A)�z

(1�ε
B)�z

�1 � �υ

�z

�z �z �z
dz dz��1

�υ ��1� �
�

�z

�υ ))

Fig. 26.29 Compatibility condition for the panel of Example 26.5.

Similarly, for elements of the booms B and C

∂γ2

∂z
=

1

d
(εC − εB) −

∂2v

∂z2
(vi)

Subtracting Eq. (vi) from (v) gives

∂γ1

∂z
−

∂γ2

∂z
=

1

d
(2εB − εA − εC) (vii)

Also

γ1 =
q1

Gt
γ2 =

q2

Gt
εA =

PA

AE
εB =

PB

BE
and εC =

PC

CE

Substituting these expressions in Eq. (vii) gives

∂q1

∂z
−

∂q2

∂z
=

Gt

dE

(

2PB

B
−

PA

A
−

PC

C

)

(viii)

From Eqs (iv) and (iii)

PA =
1

2
(P − PB), PC =

1

2
(P − PB)

Substituting in Eq. (viii), using Eq. (ii) and rearranging we have

∂2PB

∂z2
−

Gt

dE

(

4AC + BC + AB

2ABC

)

PB = −
GtP

2dE

(

A + C

AC

)
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the solution of which is

PB = D coshµz + F sinhµz +
B(A + C)P

(4AC + BC + AB)

where

µ2
=

Gt

dE

(

4AC + BC + AB

2ABC

)

The boundary conditions are: when z= 0, PB =P and when z=L, PB = 0. From the

first of these

D =
4AC

4AC + BC + AB
P

while from the second

F = −
P

sinhµL

[

4AC

4AC + BC + AB
coshµL +

B(A + C)

4AC + BC + AB

]

The expression for the load in the central boom is then

PB =
P

4AC + BC + AB

[

4AC coshµz −

(

4AC coshµL + AB + BC

sinhµL

)

× sinhµz + B(A + C)]

If there is no shear lag the hyperbolic terms disappear and when A=B=C

PB = P/3

Reference

1 Argyris, J. H. and Dunne, P. C., The general theory of cylindrical and conical tubes under torsion

and bending loads, J. Roy. Aero. Soc., Parts I–IV, February 1947; PartV, September andNovember

1947; Part VI, May and June 1949.

Problems

P.26.1 A thin-walled beam with the singly symmetrical cross-section shown in

Fig. P.26.1, is built-in at one end where the shear force Sy = 111 250N is applied

through the web 25. Assuming the cross-section remains undistorted by the loading,

determine the shear flow and the position of the centre of twist at the built-in end. The

shear modulus G is the same for all walls.

Ans: q12 = q56 = 46.6N/mm, q52 = 180.8N/mm,

q32 = q54 = 1.4N/mm, q43 = 74.6N/mm,

xR = −630.1mm, yR = 0 (relative to mid-point of 52).
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Fig. P.26.1

P.26.2 A thin-walled two-cell beam with the singly symmetrical cross-section

shown in Fig. P.26.2 is built-in at one end where the torque is 11 000Nm. Assum-

ing the cross-section remains undistorted by the loading, determine the distribution of

shear flow and the position of the centre of twist at the built-in end. The shear modulus

G is the same for all walls.

Ans: q12 = q45 = 44.1N/mm, q23 = q34 = 42.9N/mm,

q51 = 80.2N/mm, q24 = 37.4N/mm,

xR = −79.5mm, yR = 0 (referred to mid-point of web 24).

Fig. P.26.2

P.26.3 A singly symmetrical, thin-walled, closed section beam is built-in at one

end where a shear load of 10 000N is applied as shown in Fig. P.26.3. Calculate the

resulting shear flow distribution at the built-in end if the cross-section of the beam
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remains undistorted by the loading and the shear modulus G and wall thickness t are

each constant throughout the section.

Ans: q12 = 3992.9/RN/mm, q23 = 711.3/RN/mm,

q31 = (1502.4− 1894.7 cosφ − 2102.1 sin φ)/RN/mm.

Fig. P.26.3

P.26.4 A uniform, four-boom beam, built-in at one end, has the rectangular cross-

section shown in Fig. P.26.4. The walls are assumed to be effective only in shear, the

thickness and shear modulus being the same for all walls while the booms, which are of

equal area, carry only direct stresses. Assuming that the cross-section remains undis-

torted by the loading, calculate the twist at the free end due to a uniformly distributed

torque loading T= 20Nm/mm along its entire length. Take G= 20 000N/mm2 and

G/E = 0.36.

Ans: 5.9◦ anticlockwise.

Fig. P.26.4

P.26.5 Figure P.26.5 shows the doubly symmetrical idealized cross-section of a

uniform box beam of length l. Each of the four corner booms has area B andYoung’s

modulus E, and they constitute the entire direct stress carrying area. The thin walls all

have the same shear modulus G. The beam transmits a torque T from one end to the

other, and at each end warping is completely suppressed. Between the ends, the shape

of the cross-section is maintained without further restriction of warping.
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Obtain an expression for the distribution of the end load along the length of one of

the corner booms.Assuming bt1 > at2, indicate graphically the relation between torque

direction and tension and compression in the boom end loads.

Ans. P =
µBET

8abGt1t2
(bt1 − at2)

[

− sinhµz +
( coshµl − 1)

sinhµl
coshµz

]

where

µ2
= 8Gt1t2/BE(at2 + bt1).

Fig. P.26.5

P.26.6 The idealized cross-section of a beam is shown in Fig. P.26.6. The beam is

of length L and is attached to a flexible support at one end which only partially prevents

warping of the cross-section; at its free end the beam carries a concentrated torque T .

Assuming that the warping at the built-in end is directly proportional to the free

warping, ie w= kwo, derive an expression for the distribution of direct stress along

the top right-hand corner boom. State the conditions corresponding to the values k = 0

and k = 1.

Ans. σ = −µEw0(k − 1)
sinhµ(L − z)

coshµL
, µ2 =

8Gtbta

BE(bta + atb)

when k = 0, σ = µEw0
sinhµ(L − z)

coshµL
(i.e a rigid foundation)

when k = 1, σ = 0 (i.e free warping)

ta

ta

tb tb
b

a

Area B

Fig. P.26.6
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P.26.7 In the panel shown in Fig. P.26.7 the area, As, of the central stringer is to be

designed so that the stress in it is 80% of the constant stress, σe, in the edge members,

each of area B.

Assuming that the sheet, which is of constant thickness, t, carries only shear stress

and that transverse strains are prevented, derive expressions for As and B in terms of

the applied loads and the appropriate elastic moduli, E for the longitudinal members

and G for the sheet.

Evaluate these expressions in the case where P= 450 000N; Ps = 145 000N;

S= 350N/mm; σe = 275N/mm2; l= 1250mm; b= 250mm; t = 2.5mm and

G= 0.38E. Find the fraction of the total tension at the abutment which is carried

by the stringer.

Ans. As =
Gt

2Eb

(

lz −
z2

2

)

+
1.25Ps

σe
,

B =
0.1Gt

Eb
z2 +

1
σc

[(

S −
0.2Gtσel

bE

)

z + P

]

, 0.25.

Fig. P.26.7

P.26.8 A symmetrical panel has the form shown in Fig. P.26.8. The longerons are

of constant area, B1 for the edge members and B2 for the central member, and the sheet

is of uniform thickness t. The panel is assembled without stress.

Obtain an expression for the distribution of end load in the central longeron if it is

then raised to a temperature T (constant along its length) above the edge members.

Also give the longitudinal displacement, at one end of the panel, of the central longeron

relative to the edge members.

Assume that end loads are carried only by the longerons, that the sheet carries only

shear, and that transverse members are provided to prevent transverse straining and to

ensure shear effectiveness of the sheet at the ends of the panel.

Ans. P2 = EαT

(

coshµz − tanh
µl

2
sinhµz − 1

)

/

(

1

2B1
+

1

B2

)
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Disp. =
αT

µ
tanhµ

l

2

where

u2 =
2Gt

dE

(

1

2B1
+

1

B2

)

.

Fig. P.26.8

P.26.9 The flat panel shown in Fig. P.26.9 comprises a sheet of uniform thickness

t, a central stringer of constant area A and edge members of varying area. The panel

is supported on pinned supports and is subjected to externally applied shear flows S1
and S2, together with end loads P1,0 and P2,0 as shown. The areas of the edge members

vary such that the direct stresses σ1 and σ2 in the edge members are constant.

Assuming that transverse strains are prevented, that the sheet transmits shear stress

only and that each part has suitable end members to take the complementary shear

stresses, derive expressions for the variation of direct stress σ3 in the stringer and for

the variation of shear flow in the upper panel in terms of the dimensions given and the

elastic moduli E and G for the material.

Fig. P.26.9
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Ans. σ3 =

(

σ1 + σ2

2

) [

1 − coshµz −
sinhµz

sinhµl
(1 − coshµl)

]

q1 = A

(

σ1 + σ2

4

)

µ

[

sinhµz +
coshµz

sinhµl
(1 − coshµl)

]

where

µ2
= 2Gt/bAE

P.26.10 The panel shown in Fig. P.26.10 has been idealized into a combination of

direct stress carrying booms and shear stress carrying plates; the boom areas are shown

and the plate thickness is t. Derive expressions for the distribution of direct load in each

boom and state how the load distributions are affected when A=B.

Ans. P1 =
6P

2A + B

[

−

(

B + 8A

6

)

−

(

B − A

3

)

coshµ(L − z)

coshµL

]

P2 =
6P

2A + B

[

−B +
2

3
(B − A)

coshµ(L − z)

coshµL

]

P3 =
6P

2A + B

[

−

(

4A − B

6

)

−

(

B − A

3

)

coshµ(L − z)

coshµL

]

When A=B,P1 = −3P,P2 = −2P,P3 = −P, i.e no shear lag.

A

1

2

d

d

3

3P

2P

P

A

L

B

Fig. P.26.10

P.26.11 A uniform cantilever of length l has the doubly symmetrical cross-section

shown in Fig. P.26.11. The section shape remains undistorted in its own plane after load-

ing. Direct stresses on the cross-section are carried only in the concentrated longeron

areas shown, and the wall thickness dimensions given relate only to shearing effects.

All longerons have the sameYoung’s modulus E and all walls the same effective shear

modulus G.

The root of the cantilever is built-in, warping being completely suppressed there, and

a shearing force S is applied at the tip in the position indicated.
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Derive an expression for the resultant end load in a corner longeron. Also calculate

the resultant deflection of the tip, including the effects of both direct and shear strains.

Ans. P = −
S

8h

(

sinhµz

µ coshµl
+ 3z

)

where µ2 = 4Gt/3dBE (top right hand) (origin for z at free end)

Def. =
Sl

12h

(

11

4Gt
+

l2

EBh

)

.

Fig. P.26.11

P.26.12 The idealized cantilever beam shown in Fig. P.26.12 carries a uniformly

distributed load of intensityw.Assuming that all direct stresses are carried by the booms

while the panels are effective only in shear determine the distribution of direct stress

in the central boom in the top cover.Young’s modulus for the booms is E and the shear

modulus of the walls is G.

Ans. PA = −
wA

h(2B + A)

[

coshµz

µ2
+

(

µL − sinhµL

µ2 coshµL

)

sinhµz −
1

µ2
−

z2

2

]

where

µ2
=

Gt(2B + A)

dEAB

z L

d

d

h
t

w

Area A

Area B

Fig. P.26.12
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Open section beams

Instances of open section beams occurring in isolation are infrequent in aircraft

structures. The majority of wing structures do, however, contain cut-outs for undercar-

riages, inspection panels and the like, so that at these sections the wing is virtually an

open section beam. We saw in Chapter 23 that one method of analysis for such cases

is to regard the applied torque as being resisted by the differential bending of the front

and rear spars in the cut-out bay. An alternative approach is to consider the cut-out bay

as an open section beam built-in at each end and subjected to a torque. We shall now

investigate the method of analysis of such beams.

27.1 I-section beam subjected to torsion

If such a beam is axially unconstrained and loaded by a pure torque T the rate of twist

is constant along the beam and is given by

T = GJ
dθ

dz
(from Eq. (18.12))

We also showed in Section 18.2 that the shear stress varies linearly across the thickness

of the beam wall and is zero at the middle plane (Fig. 27.1). It follows that although

the beam and the middle plane warp (we are concerned here with primary warping),

there is no shear distortion of the middle plane. The mechanics of this warping are more

easily understood by reference to the thin-walled I-section beam of Fig. 27.2(a). A plan

view of the beam (Fig. 27.2(b)) reveals that the middle plane of each flange remains

rectangular, although twisted, after torsion. We now observe the effect of applying

a restraint to one end of the beam. The flanges are no longer free to warp and will

Fig. 27.1 Shear stress distribution across the wall of an open section beam subjected to torsion.
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Fig. 27.2 (a) Torsion of I-section beam; (b) plan view of beam showing undistorted shape of flanges.

Fig. 27.3 Bending effect of axial constraint on flanges of I-section beam subjected to torsion.

Fig. 27.4 Torsion of I-section beam fully built-in at one end.

bend in their own planes into the shape shown in plan in Fig. 27.3. Obviously the

beam still twists along its length but the rate of twist is no longer constant and the

resistance to torsion is provided by the St. Venant shear stresses (unrestrained warping)

plus the resistance of the flanges to bending. The total torque may therefore be written

T =TJ +TŴ, where TJ =GJ dθ/dz from the unconstrained torsion of open sections but

in which dθ/dz is not constant, and TŴ is obtained from a consideration of the bending

of the flanges. It will be instructive to derive an expression for TŴ for the I-section beam

of Fig. 27.4 before we turn our attention to the case of a beam of arbitrary section.
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Suppose that at any section z the angle of twist of the I-beam is θ. Then the lateral

displacement u of the lower flange is

u = θ
h

2

and the bending moment MF in the plane of the flange is given by

MF = −EIF
d2u

dz2

where IF is the second moment of area of the flange cross-section about the y axis. It

is assumed here that displacements produced by shear are negligible so that the lateral

deflection of the flange is completely due to the self-equilibrating direct stress system

σŴ set up by the bending of the flange. We shall not, however, assume that the shear

stresses in the flange are negligible. The shear SF in the flange is then

SF =
dMF

dz
= −EIF

d3u

dz3

or substituting for u in terms of θ and h

SF = −EIF
h

2

d3θ

dz3

Similarly, there is a shear force in the top flange of the same magnitude but opposite in

direction. Together they form a couple which represents the second part TŴ of the total

torque, thus

TŴ = SFh = −EIF
h2

2

d3θ

dz3

and the expression for the total torque may be written

T = GJ
dθ

dz
− EIF

h2

2

d3θ

dz3

27.2 Torsion of an arbitrary section beam

The insight into the physical aspects of the problem gained in the above will be found

helpful in the development of the general theory for the arbitrary section beam shown

in Fig. 27.5.

Fig. 27.5 Torsion of an open section beam fully built-in at one end.
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The theory, originally developed byWagner and Kappus, is most generally known as

theWagner torsion bending theory. It assumes that the beam is long compared with its

cross-sectional dimensions, that the cross-section remains undistorted by the loading

and that the shear strain γzs of the middle plane of the beam is negligible although

the stresses producing the shear strain are not. From similar assumptions is derived, in

Section 18.2.1, an expression for the primary warping w of the beam, viz.

w = −2AR
dθ

dz
(Eq. (18.19))

In the presence of axial constraint, dθ/dz is no longer constant so that the longitudinal

strain ∂w/∂z is not zero and direct (also shear) stresses are induced. Then

σŴ = E
∂w

∂z
= −2ARE

d2θ

dz2
(27.1)

The σŴ stress system must be self-equilibrating since the applied load is a pure torque.

Therefore, at any section the resultant end load is zero and

∫

c

σŴt ds = 0

(∫

c

denotes integration around the beam section

)

or, from Eq. (27.1) and observing that d2θ/dz2 is a function of z only
∫

c

2ARt ds = 0 (27.2)

The limits of integration of Eq. (27.2) present some difficulty in that AR is zero when

w is zero at an unknown value of s. Let

2AR = 2AR,0 − 2A′
R

where AR,0 is the area swept out from s= 0 and A′
R is the value of AR,0 at w= 0 (see

Fig. 27.6). Then in Eq. (27.2)
∫

c

2AR,0t ds − 2A′
R

∫

c

t ds = 0

and

2A′
R =

∫

c
2AR,0t ds
∫

c
t ds

giving

2AR = 2AR,0 −

∫

c
2AR,0t ds
∫

c
t ds

(27.3)

The axial constraint shear flow system, qŴ, is in equilibrium with the self-

equilibrating direct stress system. Thus, from Eq. (17.2)

∂qŴ

∂s
+ t

∂σŴ

∂z
= 0
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Fig. 27.6 Computation of swept area AR.

Hence

∂qŴ

∂s
= −t

∂σŴ

∂z

Substituting for σŴ from Eq. (27.1) and noting that qŴ = 0 when s= 0, we have

qŴ =

∫ s

0

2AREt
d3θ

dz3
ds

or

qŴ = E
d3θ

dz3

∫ s

0

2ARt ds (27.4)

Now

TŴ =

∫

c

pRqŴ ds

or, from Eq. (27.4)

TŴ = E
d3θ

dz3

∫

c

pR

(∫ s

0

2ARt ds

)

ds

The integral in this equation is evaluated by substituting pR = (d/ds)(2AR) and

integrating by parts. Thus

∫

c

d

ds
(2AR)

(∫ s

0

2ARt ds

)

ds =

[

2AR

∫ s

0

2ARt ds

]

c

−

∫

c

4A2
Rt ds

At each open edge of the beam qŴ, and therefore
∫ s

0 2ARt ds, is zero so that the integral

reduces to −
∫

c
4A2

Rt ds, giving

TŴ = −EŴR
d3θ

dz3
(27.5)

where ŴR =
∫

c
4A2

Rt ds, the torsion-bending constant, and is purely a function of the

geometry of the cross-section. The total torque T , which is the sum of the St. Venant

torque and the Wagner torsion bending torque, is then written

T = GJ
dθ

dz
− EŴR

d3θ

dz3
(27.6)
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(Note: Compare Eq. (27.6) with the expression derived for the I-section beam.)

In the expression for ŴR the thickness t is actually the direct stress carrying thickness

tD of the beam wall so that ŴR, for a beam with n booms, may be generally written

ŴR =

∫

c

4A2
RtD ds +

n
∑

r=1

(2AR,r)
2Br

where Br is the cross-sectional area of the rth boom. The calculation of ŴR enables

the second order differential equation in dθ/dz (Eq. (27.6)) to be solved. The constraint

shear flows, qŴ, follow from Eqs (27.4) and (27.3) and the longitudinal constraint

stresses from Eq. (27.1). However, before illustrating the complete method of solution

with examples we shall examine the calculation of ŴR.

So far we have referred the swept area AR, and hence ŴR, to the centre of twist of

the beam without locating its position. This may be accomplished as follows. At any

section of the beam the resultant of the qŴ shear flows is a pure torque (as is the resultant

of the St. Venant shear stresses) so that in Fig. 27.7
∫

c

qŴ sinψ ds = Sy = 0

Therefore, from Eq. (27.4)

E
d3θ

dz3

∫

c

(∫ s

0

2ARt ds

)

sinψ ds = 0

Now

sinψ =
dy

ds

d

ds
(2AR) = pR

and the above expression may be integrated by parts, thus

∫

c

dy

ds

(∫ s

0

2ARt ds

)

ds =

[

y

∫ s

0

2ARt ds

]

c

−

∫

c

y2ARt ds = 0

The first term on the right-hand side vanishes as
∫ s

0 2ARt ds is zero at each open edge

of the beam, leaving
∫

c

y2ARt ds = 0

Fig. 27.7 Determination of the position of the centre of twist.
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Again integrating by parts

∫

c

y2ARt ds =

[

2AR

∫ s

0

yt ds

]

c

−

∫

c

pR

(∫ s

0

yt ds

)

ds = 0

The integral in the first term on the right-hand side of the above equation may be

recognized, from Chapter 17, as being directly proportional to the shear flow produced

in a singly symmetrical open section beam supporting a shear load Sy. Its value is

therefore zero at each open edge of the beam. Hence

∫

c

pR

(∫ s

0

yt ds

)

ds = 0 (27.7)

Similarly, for the horizontal component Sx to be zero

∫

c

pR

(∫ s

0

xt ds

)

ds = 0 (27.8)

Equations (27.7) and (27.8) hold if the centre of twist coincides with the shear centre

of the cross-section. To summarize, the centre of twist of a section of an open section

beam carrying a pure torque is the shear centre of the section.

We are now in a position to calculateŴR. Thismay be done by evaluating
∫

c
4A2

Rt ds in

which 2AR is given by Eq. (27.3). In general, the calculation may be lengthy unless the

section has flat sides inwhich case a convenient analogy shortens thework considerably.

For the flat-sided section in Fig. 27.8(a) we first plot the area 2AR,0 swept out from the

point 1 where we choose s= 0 (Fig. 27.8(b)). The swept area AR,0 increases linearly

from zero at 1 to (1/2)p12d12 at 2 and so on. Note that movement along side 23 produces

no increment of 2AR,0 as p23 = 0. Further, we adopt a sign convention for p such that

p is positive if movement in the positive s direction of the foot of p along the tangent

causes anticlockwise rotation about R. The increment of 2AR,0 from side 34 is therefore

negative.

In the derivation of Eq. (27.3) we showed that

2A′
R =

∫

c
2AR,0t ds
∫

c
t ds

Fig. 27.8 Computation of torsion bending constant ŴR: (a) dimensions of flat-sided open section beam; (b) variation
of 2AR,0 around beam section.
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Suppose now that the line 1′2′3′ . . . 6′ is a wire of varying density such that the weight

of each element δs′ is tδs. Thus the weight of length 1′2′ is td12, etc. The y coordinate

of the centre of gravity of the ‘wire’ is then

ȳ =

∫

yt ds
∫

t ds

Comparing this expression with the previous one for 2A′
R, y and ȳ are clearly analogous

to 2AR,0 and 2A′
R, respectively. Further

ŴR =

∫

c

(2AR)
2t ds =

∫

c

(2AR,0 − 2A′
R)

2t ds

Expanding and substituting

2A′
R

∫

c

t ds for

∫

c

2AR,0t ds

gives

ŴR =

∫

c

(2AR,0)
2t ds − (2A′

R)
2

∫

c

t ds (27.9)

Therefore, in Eq. (27.9), ŴR is analogous to the moment of inertia of the ‘wire’ about

an axis through its centre of gravity parallel to the s axis.

Example 27.1
An open section beam of length L has the section shown in Fig. 27.9. The beam is firmly

built-in at one end and carries a pure torque T . Derive expressions for the direct stress

and shear flow distributions produced by the axial constraint (the σŴ and qŴ systems)

and the rate of twist of the beam.

The beam is loaded by a pure torque so that the axis of twist passes through the shear

centre S(R) of each section.We shall take the origin for s at the point 1 and initially plot

2AR,0 against s to determine ŴR (see Fig. 27.10). The position of the centre of gravity,

(2A′
R), of the wire 1

′2′3′4′ is found by taking moments about the s axis. Then

t(2d + h)2A′
R = td

(

hd

4

)

+ th

(

hd

2

)

+ td

(

hd

4

)

from which

2A′
R =

hd(h + d)

2(h + 2d)
(i)

ŴR follows from the moment of inertia of the ‘wire’ about an axis through its centre of

gravity. Hence

ŴR = 2td
1

3

(

hd

2

)2

+ th

(

hd

2

)2

−

[

hd(h + d)

2(h + 2d)

]2

t(h + 2d)

which simplifies to

ŴR =
t d3h2

12

(

2h + d

h + 2d

)

(ii)
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t

Fig. 27.9 Section of axially constrained open section beam under torsion.

Fig. 27.10 Calculation of ŴR for the section of Example 27.1.

Equation (27.6), i.e.

T = GJ
dθ

dz
− EŴR

d3θ

dz3

may now be solved for dθ/dz. Rearranging and writing µ2 =GJ/EŴR we have

d3θ

dz3
− µ2 dθ

dz
= −µ2 T

GJ
(iii)

The solution of Eq. (iii) is of standard form, i.e.

dθ

dz
=

T

GJ
+ A coshµz + B sinhµz

The constants A and B are found from the boundary conditions:

(1) At the built-in end the warping w= 0 and since w= −2ARdθ/dz then dθ/dz= 0

at the built-in end.

(2) At the free end σŴ = 0, as there is no constraint and no externally applied direct

load. Therefore, from Eq. (27.1), d2θ/dz2 = 0 at the free end.

From (1)

A = −T/GJ



27.2 Torsion of an arbitrary section beam 727

Fig. 27.11 Stiffening effect of axial constraint.

From (2)

B = (T/GJ) tanhµL

so that

dθ

dz
=

T

GJ
(1 − coshµz + tanhµL sinhµz)

or

dθ

dz
=

T

GJ

[

1 −
coshµ(L − z)

coshµL

]

(iv)

The first term in Eq. (iv) is seen to be the rate of twist derived from the St. Venant

torsion theory. The hyperbolic second term is therefore the modification introduced by

the axial constraint. Equation (iv) may be integrated to find the distribution of angle of

twist θ, the appropriate boundary condition being θ = 0 at the built-in end, i.e.

θ =
T

GJ

[

z +
sinhµ(L − z)

µ coshµL
−

sinhµL

µ coshµL

]

(v)

and the angle of twist, θF,E, at the free end of the beam is

θF,E =
TL

GJ

(

1 −
tanhµL

µL

)

(vi)

Plotting θ against z (Fig. 27.11) illustrates the stiffening effect of axial constraint on

the beam.

The decrease in the effect of axial constraint towards the free end of the beam is shown

by an examination of the variation of the St. Venant (TJ ) andWagner (TŴ) torques along

the beam. From Eq. (iv)

TJ = GJ
dθ

dz
= T

[

1 −
coshµ(L − z)

coshµL

]

(vii)

and

TŴ = −EŴR
d3θ

dz3
= T

coshµ(L − z)

coshµL
(viii)

TJ and TŴ are now plotted against z as fractions of the total torque T (Fig. 27.12). At

the built-in end the entire torque is carried by the Wagner stresses, but although the
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Fig. 27.12 Distribution of St. Venant and torsion-bending torques along the length of the open section beam shown
in Fig. 27.9.

Fig. 27.13 Distribution of axial constraint direct stress around the section.

constraint effect diminishes towards the free end it does not disappear entirely. This is

due to the fact that the axial constraint shear flow, qŴ, does not vanish at z=L, for at

this section (and all other sections) d3θ/dz3 is not zero.

Equations (iii)–(viii) are, of course, valid for open section beams of any cross-section.

Their application in a particular case is governed by the value of the torsion bending

constant ŴR and the St. Venant torsion constant J[= (h+ 2d)t3/3 for this example].

With this in mind we can proceed, as required by the example, to derive the direct

stress and shear flow distributions. The former is obtained from Eqs (27.1) and (iv), i.e.

σŴ = −2ARE
T

GJ
µ
sinhµ(L − z)

coshµL

or writing µ2 =GJ/EŴR and rearranging

σŴ = −

√

E

GJŴR
T2AR

sinhµ(L − z)

coshµL
(ix)

In Eq. (ix) E,G, J and ŴR are constants for a particular beam, T is the applied torque,

AR is a function of s and the hyperbolic term is a function of z. It follows that at a

given section of the beam the direct stress is proportional to −2AR, and for the beam

of this example the direct stress distribution has, from Fig. 27.10, the form shown in

Figs 27.13(a) and (b). In addition, the value of σŴ at a particular value of s varies along

the beam in the manner shown in Fig. 27.14.

Finally, the axial constraint shear flow, qŴ, is obtained from Eq. (27.4), namely

qŴ = E
d3θ

dz3

∫ s

0

2ARt ds
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Fig. 27.14 Spanwise distribution of axial constraint direct stress.

Fig. 27.15 Calculation of axial constraint shear flows.

At any section z, qŴ is proportional to
∫ s

0 2ARt ds and is computed as follows. Referring

to Fig. 27.15, 2AR = 2AR,0 − 2A′
R so that in flange 12

2AR =
hs1

2
−

hd

2

(

h + d

h + 2d

)

Hence

∫ s

0

2ARt ds = t

[

hs21

4
−

hd

2

(

h + d

h + 2d

)

s1

]

so that

qŴ,1 = 0 and qŴ,2 = −E
d3θ

dz3
h2d2t

4(h + 2d)

Similarly

qŴ,23 = E
d3θ

dz3

[

hd2t

2(h + 2d)
s2 −

h2d2t

4(h + 2d)

]

whence

qŴ,2 = −E
d3θ

dz3
h2d2t

4(h + 2d)
qŴ,3 = E

d3θ

dz3
h2d2t

4(h + 2d)

Note that in the above d3θ/dz3 is negative (Eq. (viii)). Also at the mid-point of the web

where s2 = h/2, qŴ = 0. The distribution on the lower flange follows from antisymmetry

and the distribution of qŴ around the section is of the form shown in Fig. 27.16.
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Fig. 27.16 Distribution of axial constraint shear flows.

The spanwise variation of qŴ has the same form as the variation of TŴ since

TŴ = −EŴR
d3θ

dz3

giving

qŴ = −
TŴ

ŴR

∫ s

0

2ARt ds from Eq. (27.4)

Hence for a given value of s, (
∫ s

0 2ARt ds), qŴ is proportional to TŴ (see Fig. 27.12).

27.3 Distributed torque loading

We now consider the more general case of a beam carrying a distributed torque loading.

In Fig. 27.17 an element of a beam is subjected to a distributed torque of intensity Ti(z),

i.e. a torque per unit length. At the section z the torque comprises the St. Venant torque

TJ plus the torque due to axial constraint TŴ. At the section z+ δz the torque increases

to T + δT (=TJ + δTJ +TŴ + δTŴ) so that for equilibrium of the beam element

TJ + δTJ + TŴ + δTŴ + Ti(z)δz − TJ − TŴ = 0

or

−Ti(z)δz = δTJ + δTŴ = δT

Fig. 27.17 Beam carrying a distributed torque loading.
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Hence

dT

dz
= −Ti(z) =

dTJ

dz
+

dTŴ

dz
(27.10)

Now

TJ = GJ
dθ

dz
(Eq. (18.12))

and

TŴ = −EŴ
d3θ

dz3
(Eq. (27.5))

so that Eq. (27.10) becomes

EŴ
d4θ

dz4
− GJ

d2θ

dz2
= Ti(z) (27.11)

The solution of Eq. (27.11) is again of standard form in which the constants of

integration are found from the boundary conditions of the particular beam under con-

sideration. For example, for a cantilever beam of length L in which the origin for z is

at the built-in end and which is subjected to a uniform torque loading, the boundary

conditions are:

when z=L, d2θ/dz2 = 0 (from Eq. (27.1))

when z= 0, dθ/dz= 0 (since the warping is zero at the built-in end, see Eq. (18.19))

when z=L, d3θ/dz3 = 0 (since TŴ =TJ =T = 0 at the free end, see Eq. (27.5))

when z= 0, θ = 0 (there is no rotation at the built-in end).

27.4 Extension of the theory to allow for general systems
of loading

So far we have been concerned with open section beams subjected to torsion in which,

due to constraint effects, axial stresses are induced. Since pure torsion can generate

axial stresses it is logical to suppose that certain distributions of axial stress applied as

external loads will cause twisting. The problem is to determine that component of an

applied direct stress system which causes twisting.

Figure 27.18 shows the profile of a thin-walled open section beam subjected to a

general system of loads which produce longitudinal, transverse and rotational displace-

ments of its cross-section. In the analysis we assume that the cross-section of the beam

is undistorted by the loading and that displacements corresponding to the shear strains

are negligible. In Fig. 27.18 the tangential displacement vt is given by Eq. (17.7), i.e.

vt = pRθ + u cosψ + v sinψ (27.12)

Also, since shear strains are assumed to be negligible, Eq. (17.6) becomes

γ =
∂w

∂s
+

∂vt

∂z
= 0 (27.13)
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Fig. 27.18 Cross-section of an open section beam subjected to a general system of loads.

Substituting for vt in Eq. (27.13) from (27.12) and integrating from the origin for s to

any point s around the cross-section, we have

ws − w0 = −
dθ

dz
2AR,0 −

du

dz
(x − x0) −

dv

dz
(y − y0) (27.14)

where 2AR,0 =
∫ s

0 pR ds. The direct stress at any point in thewall of the beam is given by

σz = E
∂ws

∂z

Therefore, from Eq. (27.14)

σz = E

[

∂w0

∂z
−

d2θ

dz2
2AR,0 −

d2u

dz2
(x − x0) −

d2v

dz2
(y − y0)

]

(27.15)

Now AR,0 =A′
R +AR (Fig. 27.18) so that Eq. (27.15) may be rewritten

σz = f1(z) − E
d2θ

dz2
2AR − E

d2u

dz2
x − E

d2v

dz2
y (27.16)

in which

f1(z) = E

(

∂w0

∂z
−

d2θ

dz2
2A′

R +
d2u

dz2
x0 +

d2v

dz2
y0

)

The axial load P on the section is given by

P =

∫

c

σzt ds = f1(z)

∫

c

t ds − E
d2θ

dz2

∫

c

2ARt ds − E
d2u

dz2

∫

c

tx ds − E
d2v

dz2

∫

c

ty ds

where
∫

c
denotes integration taken completely around the section. From Eq. (27.2) we

see that
∫

c
2ARt ds= 0. Also, if the origin of axes coincides with the centroid of the

section
∫

c
tx ds=

∫

c
ty ds= 0 and

∫

ty ds= 0 so that

P =

∫

c

σzt ds = f1(z)A (27.17)

in which A is the cross-sectional area of the material in the wall of the beam.
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The component of bending moment, Mx, about the x axis is given by

Mx =

∫

c

σzty ds

Substituting for σz from Eq. (27.16) we have

Mx = f1(z)

∫

c

ty ds − E
d2θ

dz2

∫

c

2ARty ds − E
d2u

dz2

∫

c

txy ds − E
d2v

dz2

∫

c

ty2 ds

We have seen in the derivation of Eqs (27.7) and (27.8) that
∫

c
2ARty ds= 0.Also since

∫

c

ty ds = 0

∫

c

txy ds = Ixy

∫

c

ty2 ds = Ixx

Mx = −E
d2u

dz2
Ixy − E

d2v

dz2
Ixx (27.18)

Similarly

My =

∫

c

σztx ds = −E
d2u

dz2
Iyy − E

d2v

dz2
Ixy (27.19)

Equations (27.18) and (27.19) are identical to Eqs (16.31) so that from Eqs (16.29)

E
d2u

dz2
=

MxIxy − MyIxx

IxxIyy − I2xy
E
d2v

dz2
=

−MxIyy + MyIxy

IxxIyy − I2xy
(27.20)

The first differential, d2θ/dz2, of the rate of twist in Eq. (27.16) may be isolated by

multiplying throughout by 2ARt and integrating around the section. Thus

∫

c

σz2ARt ds = f1(z)

∫

c

2ARt ds − E
d2θ

dz2

∫

c

(2AR)
2t ds − E

d2u

dz2

∫

c

2ARtx ds

− E
d2v

dz2

∫

c

2ARty ds

As before
∫

c

2ARt ds = 0

∫

c

2ARtx ds =

∫

c

2ARty ds = 0

and
∫

c

(2AR)
2t ds = ŴR

so that
∫

c

σz2ARt ds = −EŴR
d2θ

dz2
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or

d2θ

dz2
= −

∫

c

σz2ARt ds

EŴR
(27.21)

Substituting in Eq. (27.16) from Eqs (27.17), (27.20) and (27.21), we obtain

σz =
P

A
+

(

MyIxx − MxIxy

IxxIyy − I2xy

)

x +

(

MxIyy − MyIxy

IxxIyy − I2xy

)

y +
2AR

∫

c
σz2ARt ds

ŴR
(27.22)

The second two terms on the right-hand side of Eq. (27.22) give the direct stress due to

bending as predicted by elementary beam theory; note that the above approach provides

an alternative method of derivation of Eq. (16.18).

Comparing the last term on the right-hand side of Eq. (27.22) with Eq. (27.1), we

see that

2AR

∫

c
σz2ARt ds

ŴR
= σŴ

It follows therefore that the external application of a direct stress system σz induces

a self-equilibrating direct stress system σŴ. Also, the first differential of the rate of

twist (d2θ/dz2) is related to the applied σz stress system through the term
∫

c
σz2ARt ds.

Therefore, if
∫

c
σz2ARt ds is interpreted in terms of the applied loads at a particular

section then a boundary condition exists (for d2θ/dz2) which determines one of the

constants in the solution of either Eq. (27.6) or (27.11).

27.5 Moment couple (bimoment)

The units of
∫

c
σz2ARt ds are force× (distance)2 ormoment × distance. A simple phys-

ical representation of this expression would thus consist of two equal and opposite

moments applied in parallel planes some distance apart. This combination has been

termed a moment couple1 or a bimoment2 and is given the symbolMŴ or Bω. Equation

(27.22) is then written

σz =
P

A
+

(

MyIxx − MxIxy

IxxIyy − I2xy

)

x +

(

MxIyy − MyIxy

IxxIyy − I2xy

)

y +
MŴ2AR

ŴR
(27.23)

As a simple example of the determination ofMŴ consider the open section beam shown

in Fig. 27.19 which is subjected to a series of concentrated loads P1, P2, …, Pk , …, Pn

parallel to its longitudinal axis. The term σzt ds in
∫

c
σz2ARtds may be regarded as a

concentrated load acting at a point in the wall of the beam. Thus,
∫

c
σz2ARt ds becomes

∑n
k=1 Pk2ARk and hence

MŴ =

n
∑

k=1

PR2ARk (27.24)

MŴ is determined for a range of other loading systems in Ref. [2].
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Fig. 27.19 Open section beam subjected to concentrated loads parallel to its longitudinal axis.

Fig. 27.20 Column of Example 27.2.

Example 27.2
The column shown in Fig. 27.20(a) carries a vertical load of 100 kN. Calculate the

angle of twist at the top of the column and the distribution of direct stress at its base.

E = 200 000N/mm2 and G/E = 0.36.

The centre of twist R of the column cross-section coincides with its shear centre at

the mid-point of the web 23. The distribution of 2AR is obtained by the method detailed

in Example 27.1 and is shown in Fig. 27.21. The torsion bending constant ŴR is given

by Eq. (ii) of Example 27.1 and has the value 2.08× 1010mm6. The St. Venant torsion

constant J = 	st3/3= 0.17× 105mm4 so that
√
GJ/EŴR (=µ in Eq. (iii) of Example

27.1)= 0.54× 10−3. Since no torque is applied to the column the solution of Eq. (iii)

in Example 27.1 is

dθ

dz
= C coshµz + D sinhµz (i)

At the base of the column warping of the cross-section is suppressed so that, from Eq.

(18.19), dθ/dz= 0 when z= 0. Substituting in Eq. (i) gives C = 0. The moment couple

at the top of the column is obtained from Eq. (27.24) and is

MŴ = P2AR = −100 × 2.5 × 103 = −25 × 105 kNmm2
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Fig. 27.21 Distribution of area 2AR in the column of Example 27.2.

Therefore, from Eq. (27.21) and noting that
∫

c
σz2ARt ds=MŴ, we have

d2θ

dz2
=

2.5 × 105 × 103

200 000 × 2.08 × 1010
= 0.06 × 10−6/mm2

at z= 3000mm. Substitution in the differential of Eq. (i) givesD= 0.04× 10−3 so that

Eq. (i) becomes

dθ

dz
= 0.04 × 10−3 sinh 0.54 × 10−3 z (ii)

Integration of Eq. (ii) gives

θ = 0.08 cosh 0.54 × 10−3 z + F

At the built-in end (z= 0) θ = 0 so that F = −0.08. Hence

θ = 0.08(cosh 0.54 × 10−3z − 1) (iii)

At the top of the column (z= 3000mm) the angle of twist is then

θ(top) = 0.08 cosh 0.54 × 10−3
× 3000 = 0.21 rad(12.01◦)

The axial load is applied through the centroid of the cross-section so that no bending

occurs and Eq. (27.23) reduces to

σz =
P

A
+

MŴ2AR

ŴR
(iv)

At the base of the column

(MŴ)z=0 = −EŴR

(

d2θ

dz2

)

z=0

(see Eq. (27.21))

Therefore, from Eq. (ii)

(MŴ)z=0 = −200 000 × 2.08 × 1010 × 0.02 × 10−6
= −83.2 × 106Nmm2
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The direct stress distribution at the base of the column is then, from Eq. (iv)

σz = −
100 × 103

400 × 5
−

83.2 × 106

2.08 × 1010
2AR

or

σz = −50 − 4.0 × 10−3 2AR

The direct stress distribution is therefore linear around the base of the column (see

Fig. 27.21) with

σz1 = σz4 = 20.0N/mm2

σz2 = σz3 = −68.0N/mm2

27.5.1 Shear flow due to MŴ

The self-equilibrating shear flow distribution, qŴ, produced by axial constraint is

given by

∂qŴ

∂s
= −t

∂σŴ

∂z
(see derivation of Eq. (27.4))

From the last term on the right-hand side of Eqs (27.23)

∂σŴ

∂z
=

∂MŴ

∂z

2AR

ŴR

From Eq. (27.21)

MŴ = −EŴR
d2θ

dz2

so that

∂MŴ

∂z
= −EŴR

d2θ

dz3
= TŴ (see Eq. (27.5))

Hence

∂qŴ

∂s
= −TŴ

2ARt

ŴR

and

qŴ = −
TŴ

ŴR

∫ s

0

2ARt ds (as before)
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Problems

P.27.1 An axially symmetric beam has the thin-walled cross-section shown in Fig.

P.27.1. If the thickness t is constant throughout and making the usual assumptions for a

thin-walled cross-section, show that the torsion bending constant ŴR calculated about

the shear centre S is

ŴR =
13

12
d5 t

Fig. P.27.1

P.27.2 Auniform beamhas the point-symmetric cross-section shown in Fig. P.27.2.

Making the usual assumptions for a thin-walled cross-section, show that the torsion-

bending constantŴ calculated about the shear centre S isŴ =
8
3
a5tsin22α. The thickness

t is constant throughout.

Fig. P.27.2

P.27.3 The thin-walled section shown in Fig. P.27.3 consists of two semicircular

arcs of constant thickness t. Show that the torsion bending constant about the shear

centre S is

Ŵ = π2r5t

(

π

3
−

3

π

)

Fig. P.27.3
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P.27.4 A thin-walled, I-section beam, of constant wall thickness t, is mounted as a

cantilever with its web horizontal. At the tip, a downward force is applied in the plane

of one of the flanges, as shown in Fig. P.27.4. Assuming the necessary results of the

elementary theory of bending, the St. Venant theory of torsion and theWagner torsion-

bending theory, determine the distribution of direct stress over the cross-section at the

supported end.

Take

E/G = 2.6 P = 200N

h = 75mm d = 37.5mm

t = 2.5mm l = 375mm

Ans. −σ1 = σ3 = 108.9N/mm2, σ6 = −σ5 = 18.9N/mm2, σ2 = σ4 = σ24 = 0.

Fig. P.27.4

P.27.5 An open section beam of length 2l, whose ends are free to warp, consists

of two uniform portions of equal length l, as shown in Fig. P.27.5. The cross-sections

of the two halves are identical except that the thickness in one half is t and in the other

2t. If the St. Venant torsion constant and the torsion-bending constant for the portion of

thickness t are J and Ŵ, respectively, show that when the beam is loaded by a constant

torque T the relative twist between the free ends is given by

θ =
Tl

8GJ

[

9 −
49 sinh 2µl

2µl(10 cosh2 µl − 1)

]

where

µ2
= GJ/EŴ and G = shear modulus (constant throughout)

Fig. P.27.5

P.27.6 A thin-walled cantilever beam of length L has the cross-section shown in

Fig. P.27.6 and carries a load P positioned as shown at its free end. Determine the
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torsion bending constant for the beam section and derive an expression for the angle

of twist θT at the free end of the beam. Calculate the value of this angle for P= 100N,

a= 30mm, L= 1000mm, t = 2.0mm, E = 70 000N/mm2 and G= 25 000N/mm2

Ans. Ŵ = 1.25a5t θT = 6.93◦.

θŴ =
TL

GJ

[

1 −
tanhµL

µL

]

a

t

2a

a

a/2

a/2

Fig. P.27.6

P.27.7 Determine the torsion bending constant for the thin-walled beam shown in

Fig. P.27.7 and also derive an expression for the angle of twist at its free end.

B

A

h t

d

L

L

T

T

C

Fig. P.27.7
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Ans. Ŵ = th2d3/24 θT =
T

GJ

(

L −
sinhµL

µL cosh 2µL

)

P.27.8 A thin-walled cantilever beam of length L has the cross-section shown in

Fig. P.27.8 and carries an anticlockwise torque T at its free end. Determine the torsion

bending constant for the beam section and derive an expression for the rate of twist

along the length of the beam.

In a practical case the beam supports a shear load of 150N at its free end applied

vertically upwards in the plane of the web. If L= 500mm, a= 20mm, t = 1.0mm

and G/E = 0.3 calculate the value of direct stress at the point 2 including both axial

constraint and elementary bending stresses.

Ans. Ŵ = 7a5t/24
dθ

dz
=

T

GJ

(

1 −
coshµ(L − z)

coshµL

)

125.7N/mm2 (compression).

2

3 4

a

a

a
t

Shear centre

1

3
a

8

Fig. P.27.8

P.27.9 Calculate the direct stress distribution (including both axial constraint and

elementary bending stresses) at the built-in end of the cantilever beam shown in
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Fig. P.27.9 for the case when w= 0.5N/mm, L= 1500mm, h= 200mm, d = 50mm,

t = 5mm and E/G= 3.0.

Ans. σ1 = −σ3 = 197.5N/mm2 σ2 = σ5 = 0 σ4 = −σ6 = −72.5N/mm2.

3

2

1

5

6

h
t

d

L

w/unit le
ngth

Fig. P.27.9
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Wing spars and box beams

In Chapters 16–18 we established the basic theory for the analysis of open and closed

section thin-walled beams subjected to bending, shear and torsional loads. In addition,

in Chapter 20, we saw how complex stringer stiffened sections could be idealized

into sections more amenable to analysis. We shall now extend this analysis to actual

aircraft components including, in this chapter, wing spars and box beams. In subsequent

chapters we shall investigate the analysis of fuselages, wings, frames and ribs, and

consider the effects of cut-outs in wings and fuselages. Finally, in Chapter 25, an

introduction is given to the analysis of components fabricated fromcompositematerials.

Aircraft structural components are, as we saw in Chapter 12, complex, consisting

usually of thin sheets of metal stiffened by arrangements of stringers. These struc-

tures are highly redundant and require some degree of simplification or idealization

before they can be analysed. The analysis presented here is therefore approximate and

the degree of accuracy obtained depends on the number of simplifying assumptions

made. A further complication arises in that factors such as warping restraint, struc-

tural and loading discontinuities and shear lag significantly affect the analysis; we shall

investigate these effects in some simple structural components in Chapters 26 and 27.

Generally, a high degree of accuracy can only be obtained by using computer-based

techniques such as the finite element method (see Chapter 6). However, the simpler,

quicker and cheaper approximate methods can be used to advantage in the preliminary

stages of designwhen several possible structural alternatives are being investigated; they

also provide an insight into the physical behaviour of structures which computer-based

techniques do not.

Major aircraft structural components such as wings and fuselages are usually tapered

along their lengths for greater structural efficiency. Thus, wing sections are reduced both

chordwise and in depth along the wing span towards the tip and fuselage sections aft of

the passenger cabin taper to provide a more efficient aerodynamic and structural shape.

The analysis of open and closed section beams presented in Chapters 16–18 assumes

that the beam sections are uniform. The effect of taper on the prediction of direct

stresses produced by bending is minimal if the taper is small and the section properties

are calculated at the particular section being considered; Eqs (16.18)–(16.22) may

therefore be used with reasonable accuracy. On the other hand, the calculation of shear

stresses in beam webs can be significantly affected by taper.
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21.1 Tapered wing spar

Consider first the simple case of a beam, for example a wing spar, positioned in the

yz plane and comprising two flanges and a web: an elemental length δz of the beam

is shown in Fig. 21.1. At the section z the beam is subjected to a positive bending

momentMx and a positive shear force Sy. The bending moment resultants Pz,1 and Pz,2

are parallel to the z axis of the beam. For a beam in which the flanges are assumed to

resist all the direct stresses, Pz,1 =Mx/h and Pz,2 = −Mx/h. In the case where the web

is assumed to be fully effective in resisting direct stress, Pz,1 and Pz,2 are determined

by multiplying the direct stresses σz,1 and σz,2 found using Eq. (16.18) or (16.19) by

the flange areas B1 and B2. Pz,1 and Pz,2 are the components in the z direction of the

axial loads P1 and P2 in the flanges. These have components Py,1 and Py,2 parallel to

the y axis given by

Py,1 = Pz,1
δy1

δz
Py,2 = −Pz,2

δy2

δz
(21.1)

in which, for the direction of taper shown, δy2 is negative. The axial load in flange

� is given by

P1 = (P2
z,1 + P2

y,1)
1/2

Substituting for Py,1 from Eq. (21.1) we have

P1 = Pz,1

(δz2 + δy21)
1/2

δz
=

Pz,1

cosα1
(21.2)

Similarly

P2 =
Pz,2

cosα2
(21.3)

Fig. 21.1 Effect of taper on beam analysis.
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The internal shear force Sy comprises the resultant Sy,w of the web shear flows together

with the vertical components of P1 and P2. Thus

Sy = Sy,w + Py,1 − Py,2

or

Sy = Sy,w + Pz,1
δy1

δz
+ Pz,2

δy2

δz
(21.4)

so that

Sy,w = Sy − Pz,1
δy1

δz
− Pz,2

δy2

δz
(21.5)

Again we note that δy2 in Eqs (21.4) and (21.5) is negative. Equation (21.5) may be

used to determine the shear flow distribution in the web. For a completely idealized

beam the web shear flow is constant through the depth and is given by Sy,w/h. For a

beam in which the web is fully effective in resisting direct stresses the web shear flow

distribution is found using Eq. (20.6) in which Sy is replaced by Sy,w and which, for the

beam of Fig. 21.1, would simplify to

qs = −
Sy,w

Ixx

(∫ s

0

tDy ds + B1y1

)

(21.6)

or

qs = −
Sy,w

Ixx

(∫ s

0

tDy ds + B2y2

)

(21.7)

Example 21.1
Determine the shear flow distribution in the web of the tapered beam shown in Fig. 21.2,

at a section midway along its length. The web of the beam has a thickness of 2mm

Fig. 21.2 Tapered beam of Example 21.1.
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and is fully effective in resisting direct stress. The beam tapers symmetrically about its

horizontal centroidal axis and the cross-sectional area of each flange is 400mm2.

The internal bending moment and shear load at the section AA produced by the

externally applied load are, respectively

Mx = 20 × 1 = 20 kNm Sy = −20 kN

The direct stresses parallel to the z axis in the flanges at this section are obtained either

from Eqs (16.18) or (16.19) in which My = 0 and Ixy = 0. Thus, from Eq. (16.18)

σz =
Mxy

Ixx
(i)

in which

Ixx = 2 × 400 × 1502 + 2 × 3003/12

i.e.

Ixx = 22.5 × 106mm4

Hence

σz,1 = −σz,2 =
20 × 106 × 150

22.5 × 106
= 133.3N/mm2

The components parallel to the z axis of the axial loads in the flanges are therefore

Pz,1 = −Pz,2 = 133.3 × 400 = 53 320N

The shear load resisted by the beam web is then, from Eq. (21.5)

Sy,w = −20 × 103 − 53 320
δy1

δz
+ 53 320

δy2

δz

in which, from Figs 21.1 and 21.2, we see that

δy1

δz
=

−100

2 × 103
= −0.05

δy2

δz
=

100

2 × 103
= 0.05

Hence

Sy,w = −20 × 103 + 53 320 × 0.05 + 53 320 × 0.05 = −14 668N

The shear flow distribution in the web follows either from Eq. (21.6) or Eq. (21.7) and

is (see Fig. 21.2(b))

q12 =
14 668

22.5 × 106

(∫ s

0

2(150 − s) ds + 400 × 150

)

i.e.

q12 = 6.52 × 10−4(−s2 + 300s + 60 000) (ii)

The maximum value of q12 occurs when s= 150mm and q12 (max)= 53.8N/mm. The

values of shear flow at points 1 (s= 0) and 2 (s= 300mm) are q1 = 39.1 N/mm and

q2 = 39.1 N/mm; the complete distribution is shown in Fig. 21.3.
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Fig. 21.3 Shear flow (N/mm) distribution at Section AA in Example 21.1.

21.2 Open and closed section beams

We shall now consider the more general case of a beam tapered in two directions along

its length and comprising an arrangement of booms and skin. Practical examples of

such a beam are complete wings and fuselages. The beam may be of open or closed

section; the effects of taper are determined in an identical manner in either case.

Figure 21.4(a) shows a short length δz of a beam carrying shear loads Sx and Sy at

the section z; Sx and Sy are positive when acting in the directions shown. Note that if

the beam were of open cross-section the shear loads would be applied through its shear

centre so that no twisting of the beam occurred. In addition to shear loads the beam

is subjected to bending moments Mx and My which produce direct stresses σz in the

booms and skin. Suppose that in the rth boom the direct stress in a direction parallel

to the z axis is σz,r , which may be found using either Eq. (16.18) or Eq. (16.19). The

component Pz,r of the axial load Pr in the rth boom is then given by

Pz,r = σz,rBr (21.8)

where Br is the cross-sectional area of the rth boom.

From Fig. 21.4(b)

Py,r = Pz,r
δyr

δz
(21.9)

Further, from Fig. 21.4(c)

Px,r = Py,r
δxr

δyr

or, substituting for Py,r from Eq. (21.9)

Px,r = Pz,r
δxr

δz
(21.10)

The axial load Pr is then given by

Pr = (P2
x,r + P2

y,r + P2
z,r)

1/2 (21.11)
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Fig. 21.4 Effect of taper on the analysis of open and closed section beams.

or, alternatively

Pr = Pz,r
(δx2r + δy2r + δz2)1/2

δz
(21.12)

The applied shear loads Sx and Sy are reacted by the resultants of the shear flows in the

skin panels and webs, together with the components Px,r and Py,r of the axial loads in

the booms. Therefore, if Sx,w and Sy,w are the resultants of the skin and web shear flows

and there is a total of m booms in the section

Sx = Sx,w +

m
∑

r=1

Px,r Sy = Sy,w +

m
∑

r=1

Py,r (21.13)
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Fig. 21.5 Modification of moment equation in shear of closed section beams due to boom load.

Substituting in Eq. (21.13) for Px,r and Py,r from Eqs (21.10) and (21.9) we have

Sx = Sx,w +

m
∑

r=1

Pz,r
δxr

δz
Sy = Sy,w +

m
∑

r=1

Pz,r
δyr

δz
(21.14)

Hence

Sx,w = Sx −

m
∑

r=1

Pz,r
δxr

δz
Sy,w = Sy −

m
∑

r=1

Pz,r
δyr

δz
(21.15)

The shear flow distribution in an open section beam is now obtained using Eq. (20.6)

in which Sx is replaced by Sx,w and Sy by Sy,w from Eq. (21.15). Similarly for a closed

section beam, Sx and Sy in Eq. (20.11) are replaced by Sx,w and Sy,w. In the latter case the

moment equation (Eq. (17.17)) requires modification due to the presence of the boom

load components Px,r and Py,r . Thus from Fig. 21.5 we see that Eq. (17.17) becomes

Sxη0 − Syξ0 =

∮

qbp ds + 2Aqs,0 −

m
∑

r=1

Px,rηr +

m
∑

r=1

Py,rξr (21.16)

Equation (21.16) is directly applicable to a tapered beam subjected to forces positioned

in relation to the moment centre as shown. Care must be taken in a particular problem

to ensure that the moments of the forces are given the correct sign.

Example 21.2
The cantilever beam shown in Fig. 21.6 is uniformly tapered along its length in both

x and y directions and carries a load of 100 kN at its free end. Calculate the forces in

the booms and the shear flow distribution in the walls at a section 2m from the built-in

end if the booms resist all the direct stresses while the walls are effective only in shear.

Each corner boom has a cross-sectional area of 900mm2 while both central booms

have cross-sectional areas of 1200mm2.

The internal force system at a section 2m from the built-in end of the beam is

Sy = 100 kN Sx = 0 Mx = −100 × 2 = −200 kNm My = 0



590 Wing spars and box beams

Fig. 21.6 (a) Beam of Example 21.2; (b) section 2 m from built-in end.

The beam has a doubly symmetrical cross-section so that Ixy = 0 and Eq. (16.18)

reduces to

σz =
Mxy

Ixx
(i)

in which, for the beam section shown in Fig. 21.6(b)

Ixx = 4 × 900 × 3002 + 2 × 1200 × 3002 = 5.4 × 108mm4

Then

σz,r =
−200 × 106

5.4 × 108
yr

or

σz,r = −0.37yr (ii)

Hence

Pz,r = −0.37yrBr (iii)

The value of Pz,r is calculated from Eq. (iii) in column � in Table 21.1; Px,r and

Py,r follow from Eqs (21.10) and (21.9), respectively in columns � and �. The axial

load Pr , column �, is given by [�2
+ �

2
+ �

2]1/2 and has the same sign as Pz,r (see

Eq. (21.12)). The moments of Px,r and Py,r are calculated for a moment centre at the

centre of symmetry with anticlockwise moments taken as positive. Note that in Table

21.1, Px,r and Py,r are positive when they act in the positive directions of the section

x and y axes, respectively; the distances ηr and ξr of the lines of action of Px,r and
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Table 21.1

� � � � � � � � 	 

Pz,r δxr/δz δyr/δz Px,r Py,r Pr ξr ηr Px,rηr Py,rξr

Boom (kN) (kN) (kN) (kN) (m) (m) (kN m) (kN m)

1 −100 0.1 −0.05 −10 5 −101.3 0.6 0.3 3 −3
2 −133 0 −0.05 0 6.7 −177.3 0 0.3 0 0
3 −100 −0.1 −0.05 10 5 −101.3 0.6 0.3 −3 3
4 100 −0.1 0.05 −10 5 101.3 0.6 0.3 −3 3
5 133 0 0.05 0 6.7 177.3 0 0.3 0 0
6 100 0.1 0.05 10 5 101.3 0.6 0.3 3 −3

Py,r from the moment centre are not given signs since it is simpler to determine the

sign of each moment, Px,rηr and Py,rξr , by referring to the directions of Px,r and Py,r

individually.

From column �

6
∑

r=1

Py,r = 33.4 kN

From column 


6
∑

r=1

Px,rηr = 0

From column

6
∑

r=1

Py,rξr = 0

From Eq. (21.15)

Sx,w = 0 Sy,w = 100 − 33.4 = 66.6 kN

The shear flow distribution in the walls of the beam is now found using the method

described in Section 20.3. Since, for this beam, Ixy = 0 and Sx = Sx,w = 0, Eq. (20.11)

reduces to

qs =
−Sy,w

Ixx

n
∑

r=1

Bryr + qs,0 (iv)

We now ‘cut’ one of the walls, say 16. The resulting ‘open section’ shear flow is

given by

qb = −
66.6 × 103

5.4 × 108

n
∑

r=1

Bryr
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or

qb = −1.23 × 10−4
n

∑

r=1

Bryr (v)

Thus

qb,16 = 0

qb,12 = 0 − 1.23 × 10−4
× 900 × 300 = −33.2N/mm

qb,23 = −33.2 − 1.23 × 10−4
× 1200 × 300 = −77.5N/mm

qb,34 = −77.5 − 1.23 × 10−4
× 900 × 300 = −110.7N/mm

qb,45 = −77.5N/mm (from symmetry)

qb,56 = −33.2N/mm (from symmetry)

giving the distribution shown in Fig. 21.7. Taking moments about the centre of

symmetry we have, from Eq. (21.16)

−100 × 103 × 600 = 2 × 33.2 × 600 × 300 + 2 × 77.5 × 600 × 300

+ 110.7 × 600 × 600 + 2 × 1200 × 600qs,0

from which qs,0 = −97.0N/mm (i.e. clockwise). The complete shear flow distribution

is found by adding the value of qs,0 to the qb shear flow distribution of Fig. 21.7 and is

shown in Fig. 21.8.

Fig. 21.7 ‘Open section’ shear flow (N/mm) distribution in beam section of Example 21.2.

Fig. 21.8 Shear flow (N/mm) distribution in beam section of Example 21.2.
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21.3 Beams having variable stringer areas

In many aircraft, structural beams, such as wings, have stringers whose cross-sectional

areas vary in the spanwise direction. The effects of this variation on the determina-

tion of shear flow distribution cannot therefore be found by the methods described in

Section 20.3 which assume constant boom areas. In fact, as we noted in Section 20.3,

if the stringer stress is made constant by varying the area of cross-section there is no

change in shear flow as the stringer/boom is crossed.

The calculation of shear flow distributions in beams having variable stringer areas is

based on the alternative method for the calculation of shear flow distributions described

in Section 20.3 and illustrated in the alternative solution of Example 20.3. The stringer

loads Pz,1 and Pz,2 are calculated at two sections z1 and z2 of the beam a convenient

distance apart. We assume that the stringer load varies linearly along its length so that

the change in stringer load per unit length of beam is given by

�P =
Pz,1 − Pz,2

z1 − z2

The shear flow distribution follows as previously described.

Example 21.3
Solve Example 21.2 by considering the differences in boom load at sections of the

beam either side of the specified section.

In this example the stringer areas do not vary along the length of the beam but the

method of solution is identical.

We are required to find the shear flow distribution at a section 2m from the built-in

end of the beam. We therefore calculate the boom loads at sections, say 0.1m either

side of this section. Thus, at a distance 2.1m from the built-in end

Mx = −100 × 1.9 = −190 kNm

The dimensions of this section are easily found by proportion and are width= 1.18m,

depth= 0.59m. Thus the second moment of area is

Ixx = 4 × 900 × 2952 + 2 × 1200 × 2952 = 5.22 × 108mm4

and

σz,r =
−190 × 106

5.22 × 108
yr = −0.364yr

Hence

P1 = P3 = −P4 = −P6 = −0.364 × 295 × 900 = −96 642N

and

P2 = −P5 = −0.364 × 295 × 1200 = −128 856N
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At a section 1.9m from the built-in end

Mx = −100 × 2.1 = −210 kNm

and the section dimensions are width = 1.22 m, depth = 0.61m so that

Ixx = 4 × 900 × 3052 + 2 × 1200 × 3052 = 5.58 × 108mm4

and

σz,r =
−210 × 106

5.58 × 108
yr = −0.376yr

Hence

P1 = P3 = −P4 = −P6 = −0.376 × 305 × 900 = −103 212N

and

P2 = −P5 = −0.376 × 305 × 1200 = −137 616N

Thus, there is an increase in compressive load of 103 212− 96 642= 6570N in booms

1 and 3 and an increase in tensile load of 6570N in booms 4 and 6 between the two sec-

tions. Also, the compressive load in boom 2 increases by 137 616− 128 856= 8760N

while the tensile load in boom 5 increases by 8760N. Therefore, the change in boom

load per unit length is given by

�P1 = �P3 = −�P4 = −�P6 =
6570

200
= 32.85N

and

�P2 = −�P5 =
8760

200
= 43.8N

The situation is illustrated in Fig. 21.9. Suppose now that the shear flows in the panels

12, 23, 34, etc. are q12, q23, q34, etc. and consider the equilibrium of boom 2, as shown

in Fig. 21.10, with adjacent portions of the panels 12 and 23. Thus

q23 + 43.8 − q12 = 0

or

q23 = q12 − 43.8

Similarly

q34 = q23 − 32.85 = q12 − 76.65

q45 = q34 + 32.85 = q12 − 43.8

q56 = q45 + 43.8 = q12

q61 = q45 + 32.85 = q12 + 32.85
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Fig. 21.9 Change in boom loads/unit length of beam.

Fig. 21.10 Equilibrium of boom.

The moment resultant of the internal shear flows, together with the moments of the

components Py,r of the boom loads about any point in the cross-section, is equivalent

to the moment of the externally applied load about the same point. We note from

Example 21.2 that for moments about the centre of symmetry

6
∑

r=1

Px,rηr = 0

6
∑

r=1

Py,rξr = 0

Therefore, taking moments about the centre of symmetry

100 × 103 × 600 = 2q12 × 600 × 300 + 2(q12 − 43.8)600 × 300

+ (q12 − 76.65)600 × 600 + (q12 + 32.85)600 × 600

from which

q12 = 62.5N/mm
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whence

q23 = 19.7N/mm q34 = −13.2N/mm q45 = 19.7N/mm,

q56 = 63.5N/mm q61 = 96.4N/mm

so that the solution is almost identical to the longer exact solution of Example 21.2.

The shear flows q12, q23, etc. induce complementary shear flows q12, q23, etc. in

the panels in the longitudinal direction of the beam; these are, in fact, the average

shear flows between the two sections considered. For a complete beam analysis the

above procedure is applied to a series of sections along the span. The distance between

adjacent sections may be taken to be any convenient value; for actual wings distances

of the order of 350–700mm are usually chosen. However, for very small values small

percentage errors in Pz,1 and Pz,2 result in large percentage errors in �P. On the other

hand, if the distance is too large the average shear flow between two adjacent sections

may not be quite equal to the shear flow midway between the sections.

Problems

P.21.1 Awing spar has the dimensions shown in Fig. P.21.1 and carries a uniformly

distributed load of 15 kN/m along its complete length. Each flange has a cross-sectional

area of 500mm2 with the top flange being horizontal. If the flanges are assumed to resist

all direct loads while the spar web is effective only in shear, determine the flange loads

and the shear flows in the web at sections 1 and 2m from the free end.

Ans. 1m from free end: PU = 25 kN (tension), PL = 25.1 kN (compression),

q= 41.7N/mm.

2m from free end: PU = 75 kN (tension), PL = 75.4 kN (compression),

q= 56.3N/mm.

Fig. P.21.1

P.21.2 If the web in the wing spar of P.21.1 has a thickness of 2mm and is fully

effective in resisting direct stresses, calculate the maximum value of shear flow in the

web at a section 1m from the free end of the beam.

Ans. 46.8 N/mm.
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P.21.3 Calculate the shear flow distribution and the stringer and flange loads in

the beam shown in Fig. P.21.3 at a section 1.5m from the built-in end. Assume that

the skin and web panels are effective in resisting shear stress only; the beam tapers

symmetrically in a vertical direction about its longitudinal axis.

Ans. q13 = q42 = 36.9N/mm, q35 = q64 = 7.3N/mm, q21 = 96.2N/mm,

q65 = 22.3N/mm.

P2 = −P1 = 133.3 kN, P4 = P6 = −P3 = −P5 = 66.7 kN.

Fig. P.21.3
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Fuselages

Aircraft fuselages consist, as we saw in Chapter 12, of thin sheets of material stiffened

by large numbers of longitudinal stringers together with transverse frames. Gener-

ally, they carry bending moments, shear forces and torsional loads which induce axial

stresses in the stringers and skin together with shear stresses in the skin; the resistance

of the stringers to shear forces is generally ignored.Also, the distance between adjacent

stringers is usually small so that the variation in shear flow in the connecting panel will

be small. It is therefore reasonable to assume that the shear flow is constant between

adjacent stringers so that the analysis simplifies to the analysis of an idealized section

in which the stringers/booms carry all the direct stresses while the skin is effective

only in shear. The direct stress carrying capacity of the skin may be allowed for by

increasing the stringer/boom areas as described in Section 20.3. The analysis of fuse-

lages therefore involves the calculation of direct stresses in the stringers and the shear

stress distributions in the skin; the latter are also required in the analysis of transverse

frames, as we shall see in Chapter 24.

22.1 Bending

The skin/stringer arrangement is idealized into one comprising booms and skin as

described in Section 20.3. The direct stress in each boom is then calculated using either

Eqs (16.18) or (16.19) in which the reference axes and the section properties refer to

the direct stress carrying areas of the cross-section.

Example 22.1
The fuselage of a light passenger carrying aircraft has the circular cross-section shown

in Fig. 22.1(a). The cross-sectional area of each stringer is 100mm2 and the vertical

distances given in Fig. 22.1(a) are to themid-line of the sectionwall at the corresponding

stringer position. If the fuselage is subjected to a bending moment of 200 kNm applied

in the vertical plane of symmetry, at this section, calculate the direct stress distribution.

The section is first idealized using the method described in Section 20.3. As an

approximation we shall assume that the skin between adjacent stringers is flat so that
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Fig. 22.1 (a) Actual fuselage section; (b) idealized fuselage section.

we may use either Eq. (20.1) or Eq. (20.2) to determine the boom areas. From sym-

metry B1 =B9, B2 =B8 =B10 =B16, B3 =B7 =B11 =B15, B4 =B6 =B12 =B14 and

B5 =B13. From Eq. (20.1)

B1 = 100 +
0.8 × 149.6

6

(

2 +
σ2

σ1

)

+
0.8 × 149.6

6

(

2 +
σ16

σ1

)

i.e.

B1 = 100 +
0.8 × 149.6

6

(

2 +
352.0

381.0

)

× 2 = 216.6mm2

Similarly B2 = 216.6mm2, B3 = 216.6mm2, B4 = 216.7mm2. We note that stringers 5

and 13 lie on the neutral axis of the section and are therefore unstressed; the calculation

of boom areas B5 and B13 does not then arise. For this particular section Ixy = 0 since

Cx (and Cy) is an axis of symmetry. Further, My = 0 so that Eq. (16.18) reduces to

σz =
Mxy

Ixx

in which

Ixx = 2 × 216.6 × 381.02 + 4 × 216.6 × 352.02 + 4 × 216.6 × 26952

+ 4 × 216.7 × 145.82 = 2.52 × 108mm4

The solution is completed in Table 22.1.
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Table 22.1

Stringer/boom y (mm) σz (N/mm2)

1 381.0 302.4
2, 16 352.0 279.4
3, 15 269.5 213.9
4, 14 145.8 115.7
5, 13 0 0
6, 12 −145.8 −115.7
7, 11 −269.5 −213.9
8, 10 −352.0 −279.4
9 −381.0 −302.4

22.2 Shear

For a fuselage having a cross-section of the type shown in Fig. 22.1(a), the determination

of the shear flow distribution in the skin produced by shear is basically the analysis of

an idealized single cell closed section beam. The shear flow distribution is therefore

given by Eq. (20.11) in which the direct stress carrying capacity of the skin is assumed

to be zero, i.e. tD = 0, thus

qs = −

(

SxIxx − SyIxy

IxxIyy − I2xy

)

n
∑

r=1

Bryr −

(

SyIyy − SxIxy

IxxIyy − I2xy

)

n
∑

r=1

Brxr + qs,0 (22.1)

Equation (22.1) is applicable to loading cases in which the shear loads are not applied

through the section shear centre so that the effects of shear and torsion are included

simultaneously. Alternatively, if the position of the shear centre is known, the loading

system may be replaced by shear loads acting through the shear centre together with a

pure torque, and the corresponding shear flowdistributionsmaybe calculated separately

and then superimposed to obtain the final distribution.

Example 22.2
The fuselage of Example 22.1 is subjected to a vertical shear load of 100 kN applied

at a distance of 150mm from the vertical axis of symmetry as shown, for the idealized

section, in Fig. 22.2. Calculate the distribution of shear flow in the section.

As in Example 22.1, Ixy = 0 and, since Sx = 0, Eq. (22.1) reduces to

qs = −
Sy

Ixx

n
∑

r=1

Bryr + qs,0 (i)

in which Ixx = 2.52× 108mm4 as before. Then

qs =
−100 × 103

2.52 × 108

n
∑

r=1

Bryr + qs,0

or

qs = −3.97 × 10−4
n

∑

r=1

Bryr + qs,0 (ii)
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Fig. 22.2 Idealized fuselage section of Example 22.2.

Table 22.2

Skin panel Boom Br (mm2) yr (mm) qb (N/mm)

1 2 – – – 0
2 3 2 216.6 352.0 −30.3
3 4 3 216.6 269.5 −53.5
4 5 4 216.7 145.8 −66.0
5 6 5 – 0 −66.0
6 7 6 216.7 −145.8 −53.5
7 8 7 216.6 −269.5 −30.3
8 9 8 216.6 −352.0 0
1 16 1 216.6 381.0 −32.8

16 15 16 216.6 352.0 −63.1
15 14 15 216.6 269.5 −86.3
14 13 14 216.6 145.8 −98.8
13 12 13 – 0 −98.8
12 11 12 216.7 −145.8 −86.3
11 10 11 216.6 −269.5 −63.1
10 9 10 216.6 −352.0 −32.8

The first term on the right-hand side of Eq. (ii) is the ‘open section’ shear flow qb. We

therefore ‘cut’one of the skin panels, say 12, and calculate qb. The results are presented

in Table 22.2.

Note that in Table 22.2, the column headed Boom indicates the boom that is crossed

when the analysis moves from one panel to the next. Note also that, as would be

expected, the qb shear flow distribution is symmetrical about the Cx axis. The shear

flow qs,0 in the panel 12 is now found by taking moments about a convenient moment

centre, say C. Therefore from Eq. (17.17)

100 × 103 × 150 =

∮

qb pds + 2Aqs,0 (iii)
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in which A= π × 381.02 = 4.56× 105mm2. Since the qb shear flows are constant

between the booms, Eq. (iii) may be rewritten in the form (see Eq. (20.10))

100 × 103 × 150 = −2A12qb,12 − 2A23qb,23 − · · · − 2A161qb,16 l + 2Aqs,0 (iv)

in which A12, A23, . . . , A161 are the areas subtended by the skin panels 12, 23, … , 16 l

at the centre C of the circular cross-section and anticlockwise moments are taken

as positive. Clearly A12 =A23 = · · · =A16 l = 4.56× 105/16= 28 500mm2. Equation

(iv) then becomes

100× 103 × 150 = 2× 28 500(−qb12 − qb23 − · · · − qb16 l )+ 2× 4.56× 105qs,0 (v)

Substituting the values of qb from Table 22.2 in Eq. (v), we obtain

100 × 103 × 150 = 2 × 28 500(−262.4) + 2 × 4.56 × 105qs,0

from which

qs,0 = 32.8N/mm (acting in an anticlockwise sense)

The complete shear flow distribution follows by adding the value of qs,0 to the qb shear

flow distribution, giving the final distribution shown in Fig. 22.3. The solution may be

checked by calculating the resultant of the shear flow distribution parallel to the Cy

axis. Thus

2[(98.8 + 66.0)145.8 + (86.3 + 53.5)123.7 + (63.1 + 30.3)82.5

+ (32.8 − 0)29.0] × 10−3
= 99.96 kN

Fig. 22.3 Shear flow (N/mm) distribution in fuselage section of Example 22.2.
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which agrees with the applied shear load of 100 kN. The analysis of a fuselage which

is tapered along its length is carried out using the method described in Section 21.2 and

illustrated in Example 21.2.

22.3 Torsion

A fuselage section is basically a single cell closed section beam. The shear flow

distribution produced by a pure torque is therefore given by Eq. (18.1) and is

q =
T

2A
(22.2)

It is immaterial whether or not the section has been idealized since, in both cases, the

booms are assumed not to carry shear stresses.

Equation (22.2) provides an alternative approach to that illustrated in Example 22.2

for the solution of shear loaded sections in which the position of the shear centre is

known. In Fig. 22.1 the shear centre coincides with the centre of symmetry so that

the loading system may be replaced by the shear load of 100 kN acting through the

shear centre together with a pure torque equal to 100× 103 × 150= 15× 106Nmm

as shown in Fig. 22.4. The shear flow distribution due to the shear load may be found

using the method of Example 22.2 but with the left-hand side of the moment equation

(iii) equal to zero for moments about the centre of symmetry. Alternatively, use may

be made of the symmetry of the section and the fact that the shear flow is constant

between adjacent booms. Suppose that the shear flow in the panel 21 is q2 1. Then from

symmetry and using the results of Table 22.2

q9 8 = q9 10 = q16 1 = q2 1

q3 2 = q8 7 = q10 11 = q15 16 = 30.3 + q2 1

Fig. 22.4 Alternative solution of Example 22.2.
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q4 3 = q7 6 = q11 12 = q14 15 = 53.5 + q2 1

q5 4 = q6 5 = q12 13 = q13 14 = 66.0 + q2 1

The resultant of these shear flows is statically equivalent to the applied shear load so that

4(29.0q2 1 + 82.5q3 2 + 123.7q4 3 + 145.8q5 4) = 100 × 103

Substituting for q3 2, q4 3 and q5 4 from the above we obtain

4(381q2 1 + 18 740.5) = 100 × 103

whence

q2 1 = 16.4N/mm

and

q3 2 = 46.7N/mm, q4 3 = 69.9N/mm, q5 4 = 83.4N/mm etc.

The shear flow distribution due to the applied torque is, from Eq. (22.2)

q =
15 × 106

2 × 4.56 × 105
= 16.4N/mm

acting in an anticlockwise sense completely around the section. This value of shear

flow is now superimposed on the shear flows produced by the shear load; this gives the

solution shown in Fig. 22.3, i.e.

q2 1 = 16.4 + 16.4 = 32.8N/mm

q16 1 = 16.4 − 16.4 = 0 etc.

22.4 Cut-outs in fuselages

So far we have considered fuselages to be closed sections stiffened by transverse frames

and longitudinal stringers. In practice it is necessary to provide openings in these closed

stiffened shells for, for example, doors, cockpits, bomb bays, windows in passenger

cabins, etc. These openings or ‘cut-outs’ produce discontinuities in the otherwise con-

tinuous shell structure so that loads are redistributed in the vicinity of the cut-out thereby

affecting loads in the skin, stringers and frames. Frequently these regions must be heav-

ily reinforced resulting in unavoidable weight increases. In some cases, for example

door openings in passenger aircraft, it is not possible to provide rigid fuselage frames

on each side of the opening because the cabin space must not be restricted. In such

situations a rigid frame is placed around the opening to resist shear loads and to transmit

loads from one side of the opening to the other.

The effects of smaller cut-outs, such as those required for rows of windows in pas-

senger aircraft, may be found approximately as follows. Figure 22.5 shows a fuselage

panel provided with cut-outs for windows which are spaced a distance l apart. The

panel is subjected to an average shear flow qav which would be the value of the shear
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Fig. 22.5 Fuselage panel with windows.

flow in the panel without cut-outs. Considering a horizontal length of the panel through

the cut-outs we see that

q1l1 = qavl

or

q1 =
l

l1
qav (22.3)

Now considering a vertical length of the panel through the cut-outs

q2d1 = qavd

or

q2 =
d

d1
qav (22.4)

The shear flows q3 may be obtained by considering either vertical or horizontal sections

not containing the cut-out. Thus

q3ll + q2lw = qavl
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Substituting for q2 from Eq. (22.3) and noting that l= l1 + lw and d = d1 + dw, we

obtain

q3 =

(

1 −
dw

dl

lw

ll

)

qav (22.5)

Problems

P.22.1 The doubly symmetrical fuselage section shown in Fig. P.22.1 has been

idealized into an arrangement of direct stress carrying booms and shear stress carrying

skin panels; the boom areas are all 150mm2. Calculate the direct stresses in the booms

and the shear flows in the panels when the section is subjected to a shear load of 50 kN

and a bending moment of 100 kNm.

Ans. σz,1 = −σz,6 = 180N/mm2, σz,2 = σz,10 = −σz,5 = −σz,7 = 144.9N/mm2,

σz,3 = σz,9 = −σz,4 = −σz,8 = 60N/mm2.

q2 1 = q6 5 = 1.9N/mm, q3 2 = q5 4 = 12.8N/mm, q4 3 = 17.3N/mm,

q6 7 = q10 1 = 11.6N/mm, q7 8 = q9 10 = 22.5N/mm, q8 9 = 27.0N/mm.

Fig. P.22.1

P.22.2 Determine the shear flow distribution in the fuselage section of P.22.1 by

replacing the applied load by a shear load through the shear centre together with a pure

torque.



23

Wings

We have seen in Chapters 12 and 20 that wing sections consist of thin skins stiffened

by combinations of stringers, spar webs, and caps and ribs. The resulting structure

frequently comprises one, two or more cells, and is highly redundant. However, as in

the case of fuselage sections, the large number of closely spaced stringers allows the

assumption of a constant shear flow in the skin between adjacent stringers so that a

wing section may be analysed as though it were completely idealized as long as the

direct stress carrying capacity of the skin is allowed for by additions to the existing

stringer/boom areas. We shall investigate the analysis of multicellular wing sections

subjected to bending, torsional and shear loads, although, initially, it will be instructive

to examine the special case of an idealized three-boom shell.

23.1 Three-boom shell

The wing section shown in Fig. 23.1 has been idealized into an arrangement of direct

stress carrying booms and shear–stress-only carrying skin panels. The part of the wing

section aft of the vertical spar 31 performs an aerodynamic role only and is therefore

Fig. 23.1 Three-boom wing section.
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unstressed. Lift and drag loads, Sy and Sx, induce shear flows in the skin panels which

are constant between adjacent booms since the section has been completely idealized.

Therefore, resolving horizontally and noting that the resultant of the internal shear flows

is equivalent to the applied load, we have

Sx = −q12l12 + q23l23 (23.1)

Now resolving vertically

Sy = q31(h12 + h23) − q12h12 − q23h23 (23.2)

Finally, taking moments about, say, boom 3

Sxη0 + Syξ0 = −2A12q12 − 2A23q23 (23.3)

(see Eqs (20.9) and (20.10)). In the above there are three unknown values of shear flow,

q12, q23, q31 and three equations of statical equilibrium. We conclude therefore that a

three-boom idealized shell is statically determinate.

We shall return to the simple case of a three-boomwing section whenwe examine the

distributions of direct load and shear flows in wing ribs. Meanwhile, we shall consider

the bending, torsion and shear of multicellular wing sections.

23.2 Bending

Bending moments at any section of a wing are usually produced by shear loads at other

sections of the wing. The direct stress system for such a wing section (Fig. 23.2) is

given by either Eqs (16.18) or (16.19) in which the coordinates (x, y) of any point in the

cross-section and the sectional properties are referred to axes Cxy in which the origin

C coincides with the centroid of the direct stress carrying area.

Fig. 23.2 Idealized section of a multicell wing.

Example 23.1
The wing section shown in Fig. 23.3 has been idealized such that the booms carry all

the direct stresses. If the wing section is subjected to a bending moment of 300 kNm

applied in a vertical plane, calculate the direct stresses in the booms.

Boom areas: B1 = B6 = 2580mm2 B2 = B5 = 3880mm2 B3 = B4 = 3230mm2
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Fig. 23.3 Wing section of Example 23.1.

Table 23.1

Boom y (mm) σz (N/mm2)

1 165 61.2
2 230 85.3
3 200 74.2
4 −200 −74.2
5 −230 −85.3
6 −165 −61.2

We note that the distribution of the boom areas is symmetrical about the horizontal

x axis. Hence, in Eq. (16.18), Ixy = 0. Further, Mx = 300 kNm and My = 0 so that

Eq. (16.18) reduces to

σz =
Mxy

Ixx
(i)

in which

Ixy = 2(2580 × 1652 + 3880 × 2302 + 3230 × 2002) = 809 × 106mm4

Hence

σz =
300 × 106

809 × 106
y = 0.371y (ii)

The solution is now completed in Table 23.1 in which positive direct stresses are tensile

and negative direct stresses compressive.

23.3 Torsion

The chordwise pressure distribution on an aerodynamic surface may be represented

by shear loads (lift and drag loads) acting through the aerodynamic centre together

with a pitching moment M0 (see Section 12.1). This system of shear loads may be

transferred to the shear centre of the section in the form of shear loads Sx and Sy
together with a torque T . It is the pure torsion case that is considered here. In the

analysis we assume that no axial constraint effects are present and that the shape of

the wing section remains unchanged by the load application. In the absence of axial

constraint there is no development of direct stress in the wing section so that only shear
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Fig. 23.4 Multicell wing section subjected to torsion.

stresses are present. It follows that the presence of booms does not affect the analysis

in the pure torsion case.

The wing section shown in Fig. 23.4 comprises N cells and carries a torque T which

generates individual but unknown torques in each of the N cells. Each cell therefore

develops a constant shear flow qI, qII, . . . , qR, . . . , qN given by Eq. (18.1).

The total is therefore

T =

N
∑

R=1

2ARqR (23.4)

Although Eq. (23.4) is sufficient for the solution of the special case of a single cell

section, which is therefore statically determinate, additional equations are required for

an N-cell section. These are obtained by considering the rate of twist in each cell and

the compatibility of displacement condition that all N cells possess the same rate of

twist dθ/dz; this arises directly from the assumption of an undistorted cross-section.

Consider the Rth cell of the wing section shown in Fig. 23.5. The rate of twist in the

cell is, from Eq. (17.22)

dθ

dz
=

1

2ARG

∮

R

q
ds

t
(23.5)

Fig. 23.5 Shear flow distribution in the Rth cell of an N-cell wing section.
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The shear flow in Eq. (23.5) is constant along each wall of the cell and has the values

shown in Fig. 23.5. Writing
∫

ds/t for each wall as δ, Eq. (23.5) becomes

dθ

dz
=

1

2ARG
[qRδ12 + (qR − qR−1)δ23 + qRδ34 + (qR − qR+1)δ41]

or, rearranging the terms in square brackets

dθ

dz
=

1

2ARG
[−qR−1δ23 + qR(δ12 + δ23 + δ34 + δ41) − qR+1δ41]

In general terms, this equation may be rewritten in the form

dθ

dz
=

1

2ARG
(−qR−1δR−1,R + qRδR − qR+1δR+1,R) (23.6)

in which δR−1,R is
∫

ds/t for the wall common to the Rth and (R− 1)th cells, δR is
∫

ds/t

for all the walls enclosing the Rth cell and δR+1,R is
∫

ds/t for the wall common to the

Rth and (R+ 1)th cells.

The general form of Eq. (23.6) is applicable to multicell sections in which the cells

are connected consecutively, i.e. cell I is connected to cell II, cell II to cells I and III

and so on. In some cases, cell I may be connected to cells II and III, etc. (see problem

P.23.4) so that Eq. (23.6) cannot be used in its general form. For this type of section the

term
∮

q(ds/t) should be computed by considering
∫

q(ds/t) for each wall of a particular

cell in turn.

There are N equations of the type (23.6) which, with Eq. (23.4), comprise the N + 1

equations required to solve for theN unknownvalues of shear flow and the one unknown

value of dθ/dz.

Frequently, in practice, the skin panels and spar webs are fabricated from materials

possessing different properties such that the shear modulus G is not constant. The

analysis of such sections is simplified if the actual thickness t of a wall is converted to

a modulus-weighted thickness t∗ as follows. For the Rth cell of an N-cell wing section

in which G varies from wall to wall, Eq. (23.5) takes the form

dθ

dz
=

1

2AR

∮

R

q
ds

Gt

This equation may be rewritten as

dθ

dz
=

1

2ARGREF

∮

R

q
ds

(G/GREF)t
(23.7)

in which GREF is a convenient reference value of the shear modulus. Equation (23.7)

is now rewritten as
dθ

dz
=

1

2ARGREF

∮

R

q
ds

t∗
(23.8)

in which the modulus-weighted thickness t∗ is given by

t∗ =
G

GREF
t (23.9)

Then, in Eq. (23.6), δ becomes
∫

ds/t∗.
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Example 23.2
Calculate the shear stress distribution in the walls of the three-cell wing section shown

in Fig. 23.6, when it is subjected to an anticlockwise torque of 11.3 kNm.

Wall Length (mm) Thickness (mm) G (N/mm2) Cell area (mm2)

12o 1650 1.22 24 200 AI = 258 000

12i 508 2.03 27 600 AII = 355 000
13, 24 775 1.22 24 200 AIII = 161 000
34 380 1.63 27 600
35, 46 508 0.92 20 700
56 254 0.92 20 700

Note: The superscript symbols o and i are used to distinguish between outer and inner walls connecting the same two booms.

Since the wing section is loaded by a pure torque the presence of the booms has no

effect on the analysis.

Choosing GREF = 27 600N/mm2 then, from Eq. (23.9)

t∗12o =
24 200

27 600
× 1.22 = 1.07mm

Similarly

t∗13 = t∗24 = 1.07mm t∗35 = t∗46 = t∗56 = 0.69mm

Hence

δ12o =

∫

12o

ds

t∗
=

1650

1.07
= 1542

Similarly

δ12i = 250 δ13 = δ24 = 725 δ34 = 233 δ35 = δ46 = 736 δ56 = 368

Substituting the appropriate values of δ in Eq. (23.6) for each cell in turn gives the

following:

• For cell I

dθ

dz
=

1

2 × 258 000GREF
[qI(1542 + 250) − 250qII] (i)

Fig. 23.6 Wing section of Example 23.2
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Fig. 23.7 Shear stress (N/mm2) distribution in wing section of Example 23.2.

• For cell II

dθ

dz
=

1

2 × 355 000GREF
[−250qI + qII(250 + 725 + 233 + 725) − 233qIII] (ii)

• For cell III

dθ

dz
=

1

2 × 161 000GREF
[−233qII + qIII(736 + 233 + 736 + 368)] (iii)

In addition, from Eq. (23.4)

11.3 × 106 = 2(258 000qI + 355 000qII + 161 000qIII) (iv)

Solving Eqs (i)–(iv) simultaneously gives

qI = 7.1N/mm qII = 8.9N/mm qIII = 4.2N/mm

The shear stress in any wall is obtained by dividing the shear flow by the actual wall

thickness. Hence the shear stress distribution is as shown in Fig. 23.7.

23.4 Shear

Initially we shall consider the general case of anN-cell wing section comprising booms

and skin panels, the latter being capable of resisting both direct and shear stresses. The

wing section is subjected to shear loadsSx andSywhose lines of action donot necessarily

pass through the shear centre S (see Fig. 23.8); the resulting shear flow distribution is

therefore due to the combined effects of shear and torsion.

The method for determining the shear flow distribution and the rate of twist is based

on a simple extension of the analysis of a single cell beam subjected to shear loads

(Sections 17.3 and 20.3). Such a beam is statically indeterminate, the single redundancy

being selected as the value of shear flow at an arbitrarily positioned ‘cut’. Thus, the

N-cell wing section of Fig. 23.8 may be made statically determinate by ‘cutting’ a skin

panel in each cell as shown. While the actual position of these ‘cuts’ is theoretically

immaterial there are advantages to be gained from a numerical point of view if the

‘cuts’ are made near the centre of the top or bottom skin panel in each cell. Generally,
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Fig. 23.8 N-cell wing section subjected to shear loads.

at these points, the redundant shear flows (qs,0) are small so that the final shear flows

differ only slightly from those of the determinate structure. The system of simultaneous

equations fromwhich the final shear flows are found will then be ‘well conditioned’and

will produce reliable results. The solution of an ‘ill conditioned’ system of equations

would probably involve the subtraction of large numbers of a similar size which would

therefore need to be expressed to a large number of significant figures for reasonable

accuracy.Although this reasoning does not apply to a completely idealizedwing section

since the calculated values of shear flow are constant between the booms, it is again

advantageous to ‘cut’ either the top or bottom skin panels for, in the special case of a

wing section having a horizontal axis of symmetry, a ‘cut’ in, say, the top skin panels

will result in the ‘open section’ shear flows (qb) being zero in the bottom skin panels.

This decreases the arithmetical labour and simplifies the derivation of the moment

equation, as will become obvious in Example 23.4.

The ‘open section’ shear flow qb in the wing section of Fig. 23.8 is given by

Eq. (20.6), i.e.

qb = −

(

SxIxx − SyIxy

IxxIyy − I2xy

) (

∫ s

0

tDx ds +

n
∑

r=1

Brxr

)

−

(

SyIyy − SxIxy

IxxIyy − I2xy

) (

∫ s

0

tDy ds +

n
∑

r=1

Bryr

)

We are left with an unknown value of shear flow at each of the ‘cuts’, i.e. qs,0,I,

qs,0,II, . . . , qs,0,N plus the unknown rate of twist dθ/dz which, from the assumption of

an undistorted cross-section, is the same for each cell. Therefore, as in the torsion case,

there are N + 1 unknowns requiring N + 1 equations for a solution.

Consider the Rth cell shown in Fig. 23.9. The complete distribution of shear flow

around the cell is given by the summation of the ‘open section’ shear flow qb and the

value of shear flow at the ‘cut’, qs,0,R. Wemay therefore regard qs,0,R as a constant shear

flow acting around the cell. The rate of twist is again given by Eq. (17.22); thus

dθ

dz
=

1

2ARG

∮

R

q
ds

t
=

1

2ARG

∮

R

(qb + qs,0,R)
ds

t
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Fig. 23.9 Redundant shear flow in the Rth cell of an N-cell wing section subjected to shear.

Fig. 23.10 Moment equilibrium of Rth cell.

By comparison with the pure torsion case we deduce that

dθ

dz
=

1

2ARG

(

−qs,0,R−1δR−1,R + qs,0,RδR − qs,0,R+1δR+1,R +

∮

R

qb
ds

t

)

(23.10)

in which qb has previously been determined. There are N equations of the type (23.10)

so that a further equation is required to solve for the N + 1 unknowns. This is obtained

by considering the moment equilibrium of the Rth cell in Fig. 23.10.

The moment Mq,R produced by the total shear flow about any convenient moment

centre O is given by

Mq,R =

∮

qRp0 ds (see Section 18.1)

Substituting for qR in terms of the ‘open section’ shear flow qb and the redundant shear

flow qs,0,R, we have

Mq,R =

∮

R

qbp0 ds + qs,0,R

∮

R

p0 ds

or

Mq,R =

∮

R

qbp0 ds + 2ARqs,0,R
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The sum of the moments from the individual cells is equivalent to the moment of the

externally applied loads about the same point. Thus, for the wing section of Fig. 23.8

Sxη0 − Syξ0 =

N
∑

R=1

Mq,R =

N
∑

R=1

∮

R

qbp0 ds +

N
∑

R=1

2ARqs,0,R (23.11)

If the moment centre is chosen to coincide with the point of intersection of the lines of

action of Sx and Sy, Eq. (23.11) becomes

0 =

N
∑

R=1

∮

R

qbp0 ds +

N
∑

R=1

2ARqs,0,R (23.12)

Example 23.3
The wing section of Example 23.1 (Fig. 23.3) carries a vertically upward shear load

of 86.8 kN in the plane of the web 572. The section has been idealized such that the

booms resist all the direct stresses while the walls are effective only in shear. If the

shear modulus of all walls is 27 600N/mm2 except for the wall 78 for which it is three

times this value, calculate the shear flow distribution in the section and the rate of twist.

Additional data are given below.

Wall Length (mm) Thickness (mm) Cell area (mm2)

12, 56 1023 1.22 AI = 265 000
23 1274 1.63 AII = 213 000
34 2200 2.03 AIII = 413 000
483 400 2.64
572 460 2.64
61 330 1.63
78 1270 1.22

Choosing GREF as 27 600N/mm2 then, from Eq. (23.9)

t∗78 =
3 × 27 600

27 600
× 1.22 = 3.66mm

Hence

δ78 =
1270

3.66
= 347

Also

δ12 = δ56 = 840 δ23 = 783 δ34 = 1083 δ38 = 57 δ84 = 95 δ87 = 347

δ27 = 68 δ75 = 106 δ16 = 202

We now ‘cut’ the top skin panels in each cell and calculate the ‘open section’ shear

flows using Eq. (20.6) which, since the wing section is idealized, singly symmetrical
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(as far as the direct stress carrying area is concerned) and is subjected to a vertical shear

load only, reduces to

qb =
−Sy

Ixx

n
∑

r=1

Bryr (i)

where, from Example 23.1, Ixx = 809× 106mm4. Thus, from Eq. (i)

qb = −
86.8 × 103

809 × 106

n
∑

r=1

Bryr = −1.07 × 10−4
n

∑

r=1

Bryr (ii)

Since qb = 0 at each ‘cut’, then qb = 0 for the skin panels 12, 23 and 34. The remaining

qb shear flows are now calculated using Eq. (ii). Note that the order of the numerals in

the subscript of qb indicates the direction of movement from boom to boom.

qb,27 = −1.07 × 10−4
× 3880 × 230 = −95.5N/mm

qb,16 = −1.07 × 10−4
× 2580 × 165 = −45.5N/mm

qb,65 = −45.5 − 1.07 × 10−4
× 2580 × (−165) = 0

qb,57 = −1.07 × 10−4
× 3880 × (−230) = 95.5N/mm

qb,38 = −1.07 × 10−4
× 3230 × 200 = −69.0N/mm

qb,48 = −1.07 × 10−4
× 3230 × (−200) = 69.0N/mm

Therefore, as qb,83 = qb,48 (or qb,72 = qb,57), qb,78 = 0. The distribution of the qb shear

flows is shown in Fig. 23.11. The values of δ and qb are now substituted in Eq. (23.10)

for each cell in turn.

• For cell I

dθ

dz
=

1

2 × 265 000GREF
[qs,0,I(1083+95+57)−57qs,0,II+69×95+69×57] (iii)

• For cell II

dθ

dz
=

1

2 × 213 000GREF
[−57qs,0,I + qs,0,II(783 + 57 + 347 + 68) − 68qs,0,III

+ 95.5 × 68 − 69 × 57] (iv)

Fig. 23.11 qb distribution (N/mm).



618 Wings

• For cell III

dθ

dz
=

1

2 × 413 000GREF
[−68qs,0,II + qs,0,III(840 + 68 + 106 + 840 + 202)

+ 45.5 × 202 − 95.5 × 68 − 95.5 × 106] (v)

The solely numerical terms in Eqs (iii)–(v) represent
∮

R
qb(ds/t) for each cell. Care

must be taken to ensure that the contribution of each qb value to this term is interpreted

correctly. The path of the integration follows the positive direction of qs,0 in each cell,

i.e. anticlockwise. Thus, the positive contribution of qb,83 to
∮

I qb(ds/t) becomes a

negative contribution to
∮

II qb(ds/t) and so on.

The fourth equation required for a solution is obtained from Eq. (23.12) by taking

moments about the intersection of the x axis and the web 572. Thus

0 = − 69.0 × 250 × 1270 − 69.0 × 150 × 1270 + 45.5 × 330 × 1020

+ 2 × 265 000qs,0,I + 2 × 213 000qs,0,II + 2 × 413 000qs,0,III (vi)

Simultaneous solution of Eqs (iii)–(vi) gives

qs,0,I = 5.5N/mm qs,0,II = 10.2N/mm qs,0,III = 16.5N/mm

Superimposing these shear flows on the qb distribution of Fig. 23.11, we obtain the

final shear flow distribution. Thus

q34 = 5.5N/mm q23 = q87 = 10.2N/mm q12 = q56 = 16.5N/mm

q61 = 62.0N/mm q57 = 79.0N/mm q72 = 89.2N/mm

q48 = 74.5N/mm q83 = 64.3N/mm

Finally, from any of Eqs (iii)–(v)

dθ

dz
= 1.16 × 10−6 rad/mm

23.5 Shear centre

The position of the shear centre of a wing section is found in an identical manner

to that described in Section 17.3. Arbitrary shear loads Sx and Sy are applied in turn

through the shear centre S, the corresponding shear flow distributions determined and

moments taken about some convenient point. The shear flow distributions are obtained

as described previously in the shear of multicell wing sections except that the N equa-

tions of the type (23.10) are sufficient for a solution since the rate of twist dθ/dz is zero

for shear loads applied through the shear centre.
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23.6 Tapered wings

Wings are generally tapered in both spanwise and chordwise directions. The effects

on the analysis of taper in a single cell beam have been discussed in Section 21.2.

In a multicell wing section the effects are dealt with in an identical manner except

that the moment equation (21.16) becomes, for an N-cell wing section (see Figs 21.5

and 23.8)

Sxη0 − Syξ0 =

N
∑

R=1

∮

R

qbp0 ds +

N
∑

R=1

2ARqs,0,R −

m
∑

r=1

Px,rηr +

m
∑

r=1

Py,rξr (23.13)

Example 23.4
A two-cell beam has singly symmetrical cross-sections 1.2m apart and tapers symmet-

rically in the y direction about a longitudinal axis (Fig. 23.12). The beam supports loads

which produce a shear force Sy = 10 kN and a bending momentMx = 1.65 kNm at the

larger cross-section; the shear load is applied in the plane of the internal spar web. If

booms 1 and 6 lie in a plane which is parallel to the yz plane calculate the forces in

the booms and the shear flow distribution in the walls at the larger cross-section. The

booms are assumed to resist all the direct stresses while the walls are effective only in

shear. The shear modulus is constant throughout, the vertical webs are all 1.0mm thick

while the remaining walls are all 0.8mm thick:

Boom areas: B1 = B3 = B4 = B6 = 600mm2 B2 = B5 = 900mm2

Fig. 23.12 Tapered beam of Example 23.4.
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At the larger cross-section

Ixx = 4 × 600 × 902 + 2 × 900 × 902 = 34.02 × 106mm4

The direct stress in a boom is given by Eq. (16.18) in which Ixy = 0 and My = 0, i.e.

σz,r =
Mxyr

Ixx

whence

Pz,r =
Mxyr

Ixx
Br

or

Pz,r =
1.65 × 106yrBr

34.02 × 106
= 0.08yrBr (i)

The value of Pz,r is calculated from Eq. (i) in column ② of Table 23.2; Px,r and Py,r

follow from Eqs (21.10) and (21.9), respectively in columns ⑤ and ⑥. The axial load

Pr is given by [②2
+ ⑤

2
+ ⑥

2]1/2 in column ⑦ and has the same sign as Pz,r (see

Eq. (21.12)). The moments of Px,r and Py,r , columns ⑩ and , are calculated for a

moment centre at the mid-point of the internal web taking anticlockwise moments as

positive.

From column ⑤

6
∑

r=1

Px,r = 0

(as would be expected from symmetry).

From column ⑥

6
∑

r=1

Py,r = 764.4N

From column ⑩

6
∑

r=1

Px,rηr = −117 846Nmm

Table 23.2

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

Pz,r
δxr

δz

δyr

δz
Px,r Py,r Pr ξr ηr Px,rηr Py,rξr

Boom (N) (N) (N) (N) (mm) (mm) (Nmm) (Nmm)

1 2619.0 0 0.0417 0 109.2 2621.3 400 90 0 43 680
2 3928.6 0.0833 0.0417 327.3 163.8 3945.6 0 90 −29 457 0
3 2619.0 0.1250 0.0417 327.4 109.2 2641.6 200 90 −29 466 21 840
4 −2619.0 0.1250 −0.0417 −327.4 109.2 −2641.6 200 90 −29 466 21 840
5 −3928.6 0.0833 −0.0417 −327.3 163.8 −3945.6 0 90 −29 457 0
6 −2619.0 0 −0.0417 0 109.2 −2621.3 400 90 0 −43 680
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From column

6
∑

r=1

Py,rξr = −43 680Nmm

From Eq. (21.15)

Sx,w = 0 Sy,w = 10 × 103 − 764.4 = 9235.6N

Also, since Cx is an axis of symmetry, Ixy = 0 and Eq. (20.6) for the ‘open section’

shear flow reduces to

qb = −
Sy,w

Ixx

n
∑

r=1

Bryr

or

qb = −
9235.6

34.02 × 106

n
∑

r=1

Bryr = −2.715 × 10−4
n

∑

r=1

Bryr (ii)

‘Cutting’ the top walls of each cell and using Eq. (ii), we obtain the qb distribution

shown in Fig. 23.13. Evaluating δ for each wall and substituting in Eq. (23.10) gives

for cell I

dθ

dz
=

1

2 × 36 000G
(760qs,0,I − 180qs,0,II − 1314) (iii)

for cell II

dθ

dz
=

1

2 × 72 000G
(−180qs,0,I + 1160qs,0,II + 1314) (iv)

Taking moments about the mid-point of web 25 we have, using Eq. (23.13)

0 = −14.7 × 180 × 400 + 14.7 × 180 × 200 + 2 × 36 000qs,0,I + 2 × 72 000qs,0,II

−117 846 − 43 680

or

0 = −690 726 + 72 000qs,0,I + 144 000qs,0,II (v)

Fig. 23.13 qb (N/mm) distribution in beam section of Example 23.4 (view along z axis towards C).
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Fig. 23.14 Shear flow (N/mm) distribution in tapered beam of Example 23.4.

Solving Eqs (iii)–(v) gives

qs,0,I = 4.6N/mm qs,0,II = 2.5N/mm

and the resulting shear flow distribution is shown in Fig. 23.14.

23.7 Deflections

Deflections of multicell wings may be calculated by the unit loadmethod in an identical

manner to that described in Section 20.4 for open and single cell beams.

Example 23.5
Calculate the deflection at the free endof the two-cell beamshown inFig. 23.15 allowing

for both bending and shear effects. The booms carry all the direct stresses while the

skin panels, of constant thickness throughout, are effective only in shear.

Take E = 69 000N/mm2 and G = 25 900N/mm2

Boom areas: B1 = B3 = B4 = B6 = 650mm2 B2 = B5 = 1300mm2

Fig. 23.15 Deflection of two-cell wing section.
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The beam cross-section is symmetrical about a horizontal axis and carries a vertical

load at its free end through the shear centre. The deflection � at the free end is then,

from Eqs (20.17) and (20.19)

� =

∫ 2000

0

Mx,0Mx,1

EIxx
dz +

∫ 2000

0

(∫

section

q0q1

Gt
ds

)

dz (i)

where

Mx,0 = −44.5 × 103(2000 − z) Mx,1 = −(2000 − z)

and

Ixx = 4 × 650 × 1252 + 2 × 1300 × 1252 = 81.3 × 106mm4

also

Sy,0 = 44.5 × 103N Sy,1 = 1

The q0 and q1 shear flow distributions are obtained as previously described (note

dθ/dz= 0 for a shear load through the shear centre) and are

q0,12 = 9.6N/mm q0,23 = −5.8N/mm q0,43 = 50.3N/mm

q0,45 = −5.8N/mm q0,56 = 9.6N/mm q0,61 = 54.1N/mm

q0,52 = 73.6N/mm at all sections of the beam

The q1 shear flows in this case are given by q0/44.5× 103. Thus

∫

section

q0q1

Gt
ds =

1

25 900 × 2 × 44.5 × 103
(9.62 × 250 × 2 + 5.82 × 500 × 2

+ 50.32 × 250 + 54.12 × 250 + 73.62 × 250)

= 1.22 × 10−3

Hence, from Eq. (i)

� =

∫ 2000

0

44.5 × 103(2000 − z)2

69 000 × 81.3 × 106
dz +

∫ 2000

0

1.22 × 10−3dz

giving

� = 23.5mm

23.8 Cut-outs in wings

Wings, as well as fuselages, have openings in their surfaces to accommodate under-

carriages, engine nacelles and weapons installations, etc. In addition inspection panels

are required at specific positions so that, as for fuselages, the loads in adjacent portions

of the wing structure are modified.
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Fig. 23.16 Three-bay wing structure with cut-out of Example 23.6.

Initially we shall consider the case of a wing subjected to a pure torque in which one

bay of the wing has the skin on its undersurface removed. The method is best illustrated

by a numerical example.

Example 23.6
The structural portion of a wing consists of a three-bay rectangular section box which

may be assumed to be firmly attached at all points around its periphery to the aircraft

fuselage at its inboard end. The skin on the undersurface of the central bay has been

removed and thewing is subjected to a torque of 10 kNmat its tip (Fig. 23.16). Calculate

the shear flows in the skin panels and spar webs, the loads in the corner flanges and the

forces in the ribs on each side of the cut-out assuming that the spar flanges carry all the

direct loads while the skin panels and spar webs are effective only in shear.

If the wing structure were continuous and the effects of restrained warping at the

built-in end ignored, the shear flows in the skin panels would be given by Eq. (18.1), i.e.

q =
T

2A
=

10 × 106

2 × 200 × 800
= 31.3N/mm

and the flanges would be unloaded. However, the removal of the lower skin panel in

bay ② results in a torsionally weak channel section for the length of bay ② which

must in any case still transmit the applied torque to bay ① and subsequently to the

wing support points. Although open section beams are inherently weak in torsion (see

Section 18.2), the channel section in this case is attached at its inboard and outboard

ends to torsionally stiff closed boxes so that, in effect, it is built-in at both ends. We

shall examine the effect of axial constraint on open section beams subjected to torsion

in Chapter 27. An alternative approach is to assume that the torque is transmitted
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Fig. 23.17 Differential bending of front spar.

across bay ② by the differential bending of the front and rear spars. The bending

moment in each spar is resisted by the flange loads P as shown, for the front spar,

in Fig. 23.17(a). The shear loads in the front and rear spars form a couple at any station

in bay ② which is equivalent to the applied torque. Thus, from Fig. 23.17(b)

800S = 10 × 106Nmm

i.e.

S = 12 500N

The shear flow q1 in Fig. 23.17(a) is given by

q1 =
12 500

200
= 62.5N/mm

Midway between stations 1500 and 3000 a point of contraflexure occurs in the front

and rear spars so that at this point the bending moment is zero. Hence

200P = 12 500 × 750Nmm

so that

P = 46 875N

Alternatively, P may be found by considering the equilibrium of either of the spar

flanges. Thus

2P = 1500q1 = 1500 × 62.5N

whence

P = 46 875N

The flange loads P are reacted by loads in the flanges of bays ① and ③. These

flange loads are transmitted to the adjacent spar webs and skin panels as shown
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Fig. 23.18 Loads on bay ③ of the wing of Example 23.6.

in Fig. 23.18 for bay ③ and modify the shear flow distribution given by Eq. (18.1).

For equilibrium of flange 1

1500q2 − 1500q3 = P = 46 875N

or

q2 − q3 = 31.3 (i)

The resultant of the shear flows q2 and q3 must be equivalent to the applied torque.

Hence, for moments about the centre of symmetry at any section in bay ③ and using

Eq. (20.10)

200 × 800q2 + 200 × 800q3 = 10 × 106Nmm

or

q2 + q3 = 62.5 (ii)

Solving Eqs (i) and (ii) we obtain

q2 = 46.9N/mm q3 = 15.6N/mm

Comparison with the results of Eq. (18.1) shows that the shear flows are increased by a

factor of 1.5 in the upper and lower skin panels and decreased by a factor of 0.5 in the

spar webs.

The flange loads are in equilibrium with the resultants of the shear flows in the

adjacent skin panels and spar webs. Thus, for example, in the top flange of the front

spar

P(st.4500) = 0

P(st.3000) = 1500q2 − 1500q3 = 46 875N (compression)

P(st.2250) = 1500q2 − 1500q3 − 750q1 = 0
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Fig. 23.19 Distribution of load in the top flange of the front spar of the wing of Example 23.6.

Fig. 23.20 Shear flows (N/mm) on wing rib at station 3000 in the wing of Example 23.6.

The loads along the remainder of the flange follow from antisymmetry giving the

distribution shown in Fig. 23.19. The load distribution in the bottom flange of the rear

spar will be identical to that shown in Fig. 23.19 while the distributions in the bottom

flange of the front spar and the top flange of the rear spar will be reversed. We note that

the flange loads are zero at the built-in end of the wing (station 0). Generally, however,

additional stresses are induced by the warping restraint at the built-in end; these are

investigated in Chapter 26. The loads on the wing ribs on either the inboard or outboard

end of the cut-out are found by considering the shear flows in the skin panels and spar

webs immediately inboard and outboard of the rib. Thus, for the rib at station 3000 we

obtain the shear flow distribution shown in Fig. 23.20.

In Example 23.6 we implicitly assumed in the analysis that the local effects of the

cut-out were completely dissipated within the length of the adjoining bays which were

equal in length to the cut-out bay. The validity of this assumption relies on St. Venant’s

principle (Section 2.4). It may generally be assumed therefore that the effects of a cut-

out are restricted to spanwise lengths of the wing equal to the length of the cut-out on

both inboard and outboard ends of the cut-out bay.

We shall nowconsider themore complex case of awinghaving a cut-out and subjected

to shear loads which produce both bending and torsion. Again the method is illustrated

by a numerical example.

Example 23.7
A wing box has the skin panel on its undersurface removed between stations 2000 and

3000 and carries lift and drag loads which are constant between stations 1000 and 4000

as shown in Fig. 23.21(a). Determine the shear flows in the skin panels and spar webs

and also the loads in the wing ribs at the inboard and outboard ends of the cut-out bay.
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Fig. 23.21 Wing box of Example 23.7.

Assume that all bending moments are resisted by the spar flanges while the skin panels

and spar webs are effective only in shear.

The simplest approach is first to determine the shear flows in the skin panels and spar

webs as though the wing box were continuous and then to apply an equal and opposite

shear flow to that calculated around the edges of the cut-out. The shear flows in the

wing box without the cut-out will be the same in each bay and are calculated using the

method described in Section 20.3 and illustrated in Example 20.4. This gives the shear

flow distribution shown in Fig. 23.22.

We now consider bay ② and apply a shear flow of 75.9N/mm in the wall 34 in the

opposite sense to that shown in Fig. 23.22. This reduces the shear flow in the wall 34

to zero and, in effect, restores the cut-out to bay ②. The shear flows in the remaining

walls of the cut-out bay will no longer be equivalent to the externally applied shear

loads so that corrections are required. Consider the cut-out bay (Fig. 23.23) with the

shear flow of 75.9N/mm applied in the opposite sense to that shown in Fig. 23.22. The

correction shear flows q′

12, q
′

32 and q′

14 may be found using statics. Thus, resolving

forces horizontally we have

800q′

12 = 800 × 75.9N

whence

q′

12 = 75.9N/mm

Fig. 23.22 Shear flow (N/mm) distribution at any station in the wing box of Example 23.7 without cut-out.
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Fig. 23.23 Correction shear flows in the cut-out bay of the wing box of Example 23.7.

Resolving forces vertically

200q′

32 = 50q′

12 − 50 × 75.9 − 300q′

14 = 0 (i)

and taking moments about O in Fig. 23.21(b) we obtain

2 × 52 000q′

12 − 2 × 40 000q′

32 + 2 × 52 000 × 75.9 − 2 × 60 000q′

14 = 0 (ii)

Solving Eqs (i) and (ii) gives

q′

32 = 117.6N/mm q′

14 = 53.1N/mm

The final shear flows in bay ② are found by superimposing q′

12, q
′

32 and q′

14 on the

shear flows in Fig. 23.22, giving the distribution shown in Fig. 23.24. Alternatively,

these shear flows could have been found directly by considering the equilibrium of the

cut-out bay under the action of the applied shear loads.

The correction shear flows in bay ② (Fig. 23.23) will also modify the shear flow

distributions in bays ① and ③. The correction shear flows to be applied to those shown

in Fig. 23.22 for bay ③ (those in bay ① will be identical) may be found by determining

the flange loads corresponding to the correction shear flows in bay ②.

It can be seen from the magnitudes and directions of these correction shear flows

(Fig. 23.23) that at any section in bay ② the loads in the upper and lower flanges of the

front spar are equal in magnitude but opposite in direction; similarly for the rear spar.

Thus, the correction shear flows in bay ② produce an identical system of flange loads

to that shown in Fig. 23.17 for the cut-out bays in the wing structure of Example 23.6.

Fig. 23.24 Final shear flows (N/mm) in the cut-out bay of the wing box of Example 23.7.
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Fig. 23.25 Correction shear flows in bay ③ of the wing box of Example 23.7.

It follows that these correction shear flows produce differential bending of the front and

rear spars in bay ② and that the spar bending moments and hence the flange loads are

zero at the mid-bay points. Therefore, at station 3000 the flange loads are

P1 = (75.9 + 53.1) × 500 = 64 500N (compression)

P4 = 64 500N (tension)

P2 = (75.9 + 117.6) × 500 = 96 750N (tension)

P3 = 96 750N (tension)

These flange loads produce correction shear flows q′′

21, q
′′

43, q
′′

23 and q′′

41 in the skin

panels and spar webs of bay ③ as shown in Fig. 23.25. Thus for equilibrium of flange 1

1000q′′

41 + 1000q′′

21 = 64 500N (iii)

and for equilibrium of flange 2

1000q′′

21 + 1000q′′

23 = 96 750N (iv)

For equilibrium in the chordwise direction at any section in bay ③

800q′′

21 = 800q′′

43

or

q′′

21 = q′′

43 (v)

Finally, for vertical equilibrium at any section in bay ③

300q′′

41 + 50q′′

43 + 50q′′

21 − 200q′′

23 = 0 (vi)
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Fig. 23.26 Final shear flows in bay ③ (and bay ①) of the wing box of Example 23.7.

Fig. 23.27 Shear flows (N/mm) applied to the wing rib at station 3000 in the wing box of Example 23.7.

Simultaneous solution of Eqs (iii)–(vi) gives

q′′

21 = q′′

43 = 38.0N/mm q′′

23 = 58.8N/mm q′′

41 = 26.6N/mm

Superimposing these correction shear flows on those shown in Fig. 23.22 gives the final

shear flow distribution in bay ③ as shown in Fig. 23.26. The rib loads at stations 2000

and 3000 are found as before by adding algebraically the shear flows in the skin panels

and spar webs on each side of the rib. Thus, at station 3000 we obtain the shear flows

acting around the periphery of the rib as shown in Fig. 23.27. The shear flows applied

to the rib at the inboard end of the cut-out bay will be equal in magnitude but opposite

in direction.

Note that in this example only the shear loads on the wing box between stations 1000

and 4000 are given. We cannot therefore determine the final values of the loads in the

spar flanges since we do not know the values of the bending moments at these positions

caused by loads acting on other parts of the wing.

Problems

P.23.1 The central cell of a wing has the idealized section shown in Fig. P.23.1.

If the lift and drag loads on the wing produce bending moments of −120 000Nm and

−30 000Nm, respectively at the section shown, calculate the direct stresses in the

booms. Neglect axial constraint effects and assume that the lift and drag vectors are in

vertical and horizontal planes.

Boom areas: B1 = B4 = B5 = B8 = 1000mm2

B2 = B3 = B6 = B7 = 600mm2
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Ans. σ1 = −190.7N/mm2 σ2 = −181.7N/mm2 σ3 = −172.8N/mm2

σ4 = −163.8N/mm2 σ5 = 140N/mm2 σ6 = 164.8N/mm2

σ7 = 189.6N/mm2 σ8 = 214.4N/mm2.

Fig. P.23.1

P.23.2 Figure P.23.2 shows the cross-section of a two-cell torque box. If the shear

stress in any wall must not exceed 140N/mm2, find the maximum torque which can be

applied to the box.

If this torque were applied at one end and resisted at the other end of such a box of

span 2500mm, find the twist in degrees of one end relative to the other and the torsional

rigidity of the box. The shear modulus G= 26 600N/mm2 for all walls.

Data:

Shaded areas: A34 = 6450mm2, A16 = 7750mm2

Wall lengths: s34 = 250mm, s16 = 300mm

Wall thickness: t12 = 1.63mm, t34 = 0.56mm

t23 = t45 = t56 = 0.92mm

t61 = 2.03mm

t25 = 2.54mm

Ans. T = 102 417Nm, θ = 1.46◦, GJ = 10× 1012 Nmm2/rad.

Fig. P.23.2
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P.23.3 Determine the torsional stiffness of the four-cell wing section shown in

Fig. P.23.3.

Data:

Wall 12 23 34

78 67 56 45o 45i 36 27 18

Peripheral length (mm) 762 812 812 1525 356 406 356 254

Thickness (mm) 0.915 0.915 0.915 0.711 1.220 1.625 1.220 0.915

Cell areas (mm2) AI = 161 500 AII = 291 000

AIII = 291 000 AIV = 226 000

Ans. 522.5× 106GNmm2/rad.

Fig. P.23.3

P.23.4 Determine the shear flow distribution for a torque of 56 500Nm for the three

cell section shown in Fig. P.23.4. The section has a constant shear modulus throughout.

Wall Length (mm) Thickness (mm) Cell Area (mm2)

12U 1084 1.220 I 108 400

12L 2160 1.625 II 202 500
14, 23 127 0.915 III 528 000

34U 797 0.915

34L 797 0.915

Fig. P.23.4
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Ans. q12U = 25.4N/mm q21L = 33.5N/mm q14 = q32 = 8.1N/mm

q43U = 13.4N/mm q34L = 5.3N/mm.

P.23.5 The idealized cross-section of a two-cell thin-walled wing box is shown

in Fig. P.23.5. If the wing box supports a load of 44 500N acting along the web 25,

calculate the shear flow distribution. The shear modulus G is the same for all walls of

the wing box.

Wall Length (mm) Thickness (mm) Boom Area (mm2)

16 254 1.625 1, 6 1290
25 406 2.032 2, 5 1936
34 202 1.220 3, 4 645
12, 56 647 0.915
23, 45 775 0.559

Cell areas: AI = 232 000mm2, AII = 258 000mm2

Ans. q16 = 33.9N/mm q65 = q21 = 1.1N/mm

q45 = q23 = 7.2N/mm q34 = 20.8N/mm

q25 = 73.4N/mm.

Fig. P.23.5

P.23.6 Figure P.23.6 shows a singly symmetric, two-cell wing section in which all

direct stresses are carried by the booms, shear stresses alone being carried by the walls.

All walls are flat with the exception of the nose portion 45. Find the position of the

Fig. P.23.6
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shear centre S and the shear flow distribution for a load of Sy = 66 750N through S.

Tabulated below are lengths, thicknesses and shear moduli of the shear carrying walls.

Note that dotted line 45 is not a wall.

Wall Length (mm) Thickness (mm) G(N/mm2) Boom Area (mm2)

34, 56 380 0.915 20 700 1, 3, 6, 8 1290
12, 23, 67, 78 356 0.915 24 200 2, 4, 5, 7 645
36, 81 306 1.220 24 800
45 610 1.220 24 800

Nose area N1 = 51 500mm2

Ans. xS = 160.1mm q12 = q78 = 17.8N/mm q32 = q76 = 18.5N/mm

q63 = 88.2N/mm q43 = q65 = 2.9N/mm q54 = 39.2N/mm

q81 = 90.4N/mm.

P.23.7 A singly symmetric wing section consists of two closed cells and one open

cell (see Fig. P.23.7). The webs 25, 34 and the walls 12, 56 are straight, while all

other walls are curved. All walls of the section are assumed to be effective in carrying

shear stresses only, direct stresses being carried by booms 1–6. Calculate the distance

xS of the shear centre S aft of the web 34. The shear modulus G is the same for

all walls.

Wall Length (mm) Thickness (mm) Boom Area (mm2) Cell Area (mm2)

12, 56 510 0.559 1, 6 645 I 93 000
23, 45 765 0.915 2, 5 1290 II 258 000
34o 1015 0.559 3, 4 1935

34i 304 2.030
25 304 1.625

Ans. 241.4mm.

Fig. P.23.7

P.23.8 A portion of a tapered, three-cell wing has singly symmetrical ideal-

ized cross-sections 1000mm apart as shown in Fig. P.23.8. A bending moment

Mx = 1800Nm and a shear load Sy = 12 000N in the plane of the web 52 are applied at

the larger cross-section. Calculate the forces in the booms and the shear flowdistribution
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at this cross-section. The modulus G is constant throughout. Section dimensions at the

larger cross-section are given below.

Fig. P.23.8

Wall Length (mm) Thickness (mm) Boom Area (mm2) Cell Area (mm2)

12, 56 600 1.0 1, 6 600 I 100 000
23, 45 800 1.0 2, 5 800 II 260 000
34o 1200 0.6 3, 4 800 III 180 000

34i 320 2.0
25 320 2.0
16 210 1.5

Ans. P1 = −P6 = 1200N P2 = −P5 = 2424N P3 = −P4 = 2462N

q12 = q56 = 3.74N/mm q23 = q45 = 3.11N/mm q34o = 0.06N/mm

q43i = 12.16N/mm q52 = 14.58N/mm q61 = 11.22N/mm.

P.23.9 A portion of a wing box is built-in at one end and carries a shear load of

2000N through its shear centre and a torque of 1000Nm as shown in Fig. P.23.9. If

Fig. P.23.9
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the skin panel in the upper surface of the inboard bay is removed, calculate the shear

flows in the spar webs and remaining skin panels, the distribution of load in the spar

flanges and the loading on the central rib. Assume that the spar webs and skin panels

are effective in resisting shear stresses only.

Ans. Bay ①: q in spar webs= 7.5N/mm

Bay ②: q in spar webs= 1.9N/mm, in skin panels= 9.4N/mm

Flange loads (2): at built-in end= 1875N (compression)

at central rib= 5625N (compression)

Rib loads: q (horizontal edges)= 9.4N/mm

q (vertical edges)= 9.4N/mm.
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Fuselage frames and
wing ribs

Aircraft are constructed primarily from thin metal skins which are capable of resisting

in-plane tension and shear loads but buckle under comparatively low values of in-plane

compressive loads. The skins are therefore stiffened by longitudinal stringers which

resist the in-plane compressive loads and, at the same time, resist small distributed loads

normal to the plane of the skin. The effective length in compression of the stringers is

reduced, in the case of fuselages, by transverse frames or bulkheads or, in the case of

wings, by ribs. In addition, the frames and ribs resist concentrated loads in transverse

planes and transmit them to the stringers and the plane of the skin. Thus, cantilever

wings may be bolted to fuselage frames at the spar caps while undercarriage loads are

transmitted to the wing through spar and rib attachment points.

24.1 Principles of stiffener/web construction

Generally, frames and ribs are themselves fabricated from thin sheets of metal and

therefore require stiffening members to distribute the concentrated loads to the thin

webs. If the load is applied in the plane of a web the stiffeners must be aligned with the

direction of the load. Alternatively, if this is not possible, the load should be applied

at the intersection of two stiffeners so that each stiffener resists the component of load

in its direction. The basic principles of stiffener/web construction are illustrated in

Example 24.1.

Example 24.1
A cantilever beam (Fig. 24.1) carries concentrated loads as shown. Calculate the dis-

tribution of stiffener loads and the shear flow distribution in the web panels assuming

that the latter are effective only in shear.

We note that stiffeners HKD and JK are required at the point of application of

the 4000N load to resist its vertical and horizontal components. A further transverse

stiffener GJC is positioned at the unloaded end J of the stiffener JK since stress concen-

trations are produced if a stiffener ends in the centre of a web panel. We note also that

the web panels are only effective in shear so that the shear flow is constant throughout a

particular web panel; the assumed directions of the shear flows are shown in Fig. 24.1.
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Fig. 24.1 Cantilever beam of Example 24.1.

It is instructive at this stage to examine the physical role of the different structural

components in supporting the applied loads. Generally, stiffeners are assumed to with-

stand axial forces only so that the horizontal component of the load at K is equilibrated

locally by the axial load in the stiffener JK and not by the bending of stiffener HKD.

By the same argument the vertical component of the load at K is resisted by the axial

load in the stiffener HKD. These axial stiffener loads are equilibrated in turn by the

resultants of the shear flows q1 and q2 in the web panels CDKJ and JKHG. Thus we

see that the web panels resist the shear component of the externally applied load and at

the same time transmit the bending and axial load of the externally applied load to the

beam flanges; subsequently, the flange loads are reacted at the support points A and E.

Consider the free body diagrams of the stiffeners JK andHKD shown in Figs. 24.2(a)

and (b).

From the equilibrium of stiffener JK we have

(q1 − q2) × 250 = 4000 sin 60◦
= 3464.1N (i)

Fig. 24.2 Free body diagrams of stiffeners JK and HKD in the beam of Example 24.1.
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Fig. 24.3 Equilibrium of stiffener CJG in the beam of Example 24.1.

and from the equilibrium of stiffener HKD

200q1 + 100q2 = 4000 cos 60◦
= 2000N (ii)

Solving Eqs (i) and (ii) we obtain

q1 = 11.3N/mm q2 = −2.6N/mm

The vertical shear force in the panel BCGF is equilibrated by the vertical resultant of

the shear flow q3. Thus

300q3 = 4000 cos 60◦
= 2000N

whence

q3 = 6.7N/mm

Alternatively, q3 may be found by considering the equilibrium of the stiffener CJG.

From Fig. 24.3

300q3 = 200q1 + 100q2

or

300q3 = 200 × 11.3 − 100 × 2.6

from which

q3 = 6.7N/mm

The shear flow q4 in the panel ABFE may be found using either of the above methods.

Thus, considering the vertical shear force in the panel

300q4 = 4000 cos 60◦
+ 5000 = 7000N

whence

q4 = 23.3N/mm

Alternatively, from the equilibrium of stiffener BF

300q4 − 300q3 = 5000N
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Fig. 24.4 Load distributions in flanges of the beam of Example 24.1.

whence

q4 = 23.3N/mm

The flange and stiffener load distributions are calculated in the same way and are

obtained from the algebraic summation of the shear flows along their lengths. For

example, the axial load PA at A in the flange ABCD is given by

PA = 250q1 + 250q3 + 250q4

or

PA = 250 × 11.3 + 250 × 6.7 + 250 × 23.3 = 10 325N (tension)

Similarly

PE = −250q2 − 250q3 − 250q4

i.e.

PE = 250 × 2.6 − 250 × 6.7 − 250 × 23.3 = −6850N (compression)

The complete load distribution in each flange is shown in Fig. 24.4. The stiffener load

distributions are calculated in the same way and are shown in Fig. 24.5.

The distribution of flange load in the bays ABFE and BCGF could have been

obtained by considering the bending and axial loads on the beam at any section. For
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Fig. 24.5 Load distributions in stiffeners of the beam of Example 24.1.

example, at the section AE we can replace the actual loading system by a bending

moment

MAE = 5000 × 250 + 2000 × 750 − 3464.1 × 50 = 2 576 800Nmm

and an axial load acting midway between the flanges (irrespective of whether or not

the flange areas are symmetrical about this point) of

P = 3464.1N

Thus

PA =
2 576 800

300
+

3464.1

2
= 10 321N (tension)

and

PE =
−2 576 800

300
+

3464.1

2
= −6857N (compression)

This approach cannot be used in the bay CDHG except at the section CJG since the

axial load in the stiffener JK introduces an additional unknown.

The above analysis assumes that the web panels in beams of the type shown in

Fig. 24.1 resist pure shear along their boundaries. In Chapter 9 we saw that thin webs

may buckle under the action of such shear loads producing tension field stresses which,

in turn, induce additional loads in the stiffeners and flanges of beams. The tension field

stresses may be calculated separately by the methods described in Chapter 9 and then

superimposed on the stresses determined as described above.

So far we have been concerned with web/stiffener arrangements in which the loads

have been applied in the plane of the web so that two stiffeners are sufficient to resist the

components of a concentrated load. Frequently, loads have an out-of-plane component

in which case the structure should be arranged so that two webs meet at the point of

load application with stiffeners aligned with the three component directions (Fig. 24.6).

In some situations it is not practicable to have two webs meeting at the point of load

application so that a component normal to a web exists. If this component is small it

may be resisted in bending by an in-plane stiffener, otherwise an additional member

must be provided spanning between adjacent frames or ribs, as shown in Fig. 24.7. In

general, no normal loads should be applied to an unsupported web no matter how small

their magnitude.
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Fig. 24.6 Structural arrangement for an out of plane load.

Fig. 24.7 Support of load having a component normal to a web.

24.2 Fuselage frames

We have noted that fuselage frames transfer loads to the fuselage shell and provide

column support for the longitudinal stringers. The frames generally take the form of

open rings so that the interior of the fuselage is not obstructed. They are connected

continuously around their peripheries to the fuselage shell and are not necessarily

circular in form but will usually be symmetrical about a vertical axis.

A fuselage frame is in equilibrium under the action of any external loads and the

reaction shear flows from the fuselage shell. Suppose that a fuselage frame has a

vertical axis of symmetry and carries a vertical external load W , as shown in Fig.

24.8(a) and (b). The fuselage shell/stringer section has been idealized such that the

fuselage skin is effective only in shear. Suppose also that the shear force in the fuselage

immediately to the left of the frame is Sy,1 and that the shear force in the fuselage

immediately to the right of the frame is Sy,2; clearly, Sy,2 = Sy,1 −W . Sy,1 and Sy,2
generate shear flow distributions q1 and q2, respectively in the fuselage skin, each given

by Eq. (22.1) in which Sx,1 = Sx,2 = 0 and Ixy = 0 (Cy is an axis of symmetry). The shear

flow qf transmitted to the periphery of the frame is equal to the algebraic sum of q1 and

q2, i.e.

qf = q1 − q2
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Fig. 24.8 Loads on a fuselage frame.

Thus, substituting for q1 and q2 obtained from Eq. (22.1) and noting that Sy,2 =

Sy,1 −W , we have

qf =
−W

Ixx

n
∑

r=1

Bryr + qs,0

in which qs,0 is calculated using Eq. (17.17) where the shear load is W and

qb =
−W

Ixx

n
∑

r=1

Bryr

The method of determining the shear flow distribution applied to the periphery of a

fuselage frame is identical to the method of solution (or the alternative method) of

Example 22.2.

Having determined the shear flow distribution around the periphery of the frame,

the frame itself may be analysed for distributions of bending moment, shear force and

normal force, as described in Section 5.4.

24.3 Wing ribs

Wing ribs perform similar functions to those performed by fuselage frames. They

maintain the shape of the wing section, assist in transmitting external loads to the wing

skin and reduce the column length of the stringers. Their geometry, however, is usually

different in that they are frequently of unsymmetrical shape and possess webs which

are continuous except for lightness holes and openings for control runs.

Wing ribs are subjected to loading systems which are similar to those applied to

fuselage frames. External loads applied in the plane of the rib produce a change in shear

force in the wing across the rib; this induces reaction shear flows around its periphery.

These are calculated using the methods described in Chapter 17 and in Chapter 23.
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Fig. 24.9 Wing rib of Example 24.2.

To illustrate the method of rib analysis we shall use the example of a three-flange wing

section in which, as we noted in Section 23.1, the shear flow distribution is statically

determinate.

Example 24.2
Calculate the shear flows in the web panels and the axial loads in the flanges of the

wing rib shown in Fig. 24.9. Assume that the web of the rib is effective only in shear

while the resistance of the wing to bending moments is provided entirely by the three

flanges 1, 2 and 3.

Since the wing bending moments are resisted entirely by the flanges 1, 2 and 3, the

shear flows developed in the wing skin are constant between the flanges. Using the

method described in Section 23.1 for a three-flange wing section we have, resolving

forces horizontally

600q12 − 600q23 = 12 000N (i)

Resolving vertically

300q31 − 300q23 = 15 000N (ii)

Taking moments about flange 3

2(50 000 + 95 000)q23 + 2 × 95 000q12 = −15 000 × 300Nmm (iii)

Solution of Eqs (i)–(iii) gives

q12 = 13.0N/mm q23 = −7.0N/mm q31 = 43.0N/mm

Consider now the nose portion of the rib shown in Fig. 24.10 and suppose that the shear

flow in the web immediately to the left of the stiffener 24 is q1. The total vertical shear

force Sy,1 at this section is given by

Sy,1 = 7.0 × 300 = 2100N

The horizontal components of the rib flange loads resist the bending moment at this

section. Thus

Px,4 = Px,2 =
2 × 50 000 × 7.0

300
= 2333.3N
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Fig. 24.10 Equilibrium of nose portion of the rib.

The corresponding vertical components are then

Py,2 = Py,4 = 2333.3 tan 15◦
= 625.2N

Thus the shear force carried by the web is 2100− 2× 625.2= 849.6N. Hence

q1 =
849.6

300
= 2.8N/mm

The axial loads in the rib flanges at this section are given by

P2 = P4 = (2333.32 + 625.22)1/2 = 2415.6N

The rib flange loads and web panel shear flows, at a vertical section immediately to

the left of the intermediate web stiffener 56, are found by considering the free body

diagram shown in Fig. 24.11. At this section the rib flanges have zero slope so that the

flange loads P5 and P6 are obtained directly from the value of bending moment at this

section. Thus

P5 = P6 = 2[(50 000 + 46 000) × 7.0 − 49 000 × 13.0]/320 = 218.8N

The shear force at this section is resisted solely by the web. Hence

320q2 = 7.0 × 300 + 7.0 × 10 − 13.0 × 10 = 2040N

Fig. 24.11 Equilibrium of rib forward of intermediate stiffener 56.
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Fig. 24.12 Equilibrium of stiffener 56.

Fig. 24.13 Equilibrium of the rib forward of stiffener 31.

so that

q2 = 6.4N/mm

The shear flow in the rib immediately to the right of stiffener 56 is found most simply

by considering the vertical equilibrium of stiffener 56 as shown in Fig. 24.12. Thus

320q3 = 6.4 × 320 + 15 000

which gives

q3 = 53.3N/mm

Finally, we shall consider the rib flange loads and the web shear flow at a section

immediately forward of stiffener 31. From Fig. 24.13, in which we take moments

about the point 3

M3 = 2[(50 000+95 000)×7.0−95 000×13.0]+15 000×300 = 4.06×106Nmm

The horizontal components of the flange loads at this section are then

Px,1 = Px,3 =
4.06 × 106

300
= 13 533.3N
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and the vertical components are

Py,1 = Py,3 = 3626.2N

Hence

P1 = P3 =

√

13 533.32 + 3626.22 = 14 010.7N

The total shear force at this section is 15 000+ 300× 7.0= 17 100N. Therefore, the

shear force resisted by the web is 17 100− 2× 3626.2= 9847.6N so that the shear

flow q3 in the web at this section is

q3 =
9847.6

300
= 32.8N/mm

Problems

P.24.1 The beam shown in Fig. P.24.1 is simply supported at each end and carries

a load of 6000N. If all direct stresses are resisted by the flanges and stiffeners and the

web panels are effective only in shear, calculate the distribution of axial load in the

flange ABC and the stiffener BE and the shear flows in the panels.

Ans: q(ABEF)= 4N/mm, q(BCDE)= 2N/mm

PBE increases linearly from zero at B to 6000N (tension) at E

PAB and PCB increase linearly from zero at A and C to 4000N (compres-

sion) at B.

Fig. P.24.1

P.24.2 Calculate the shear flows in the web panels and direct load in the flanges and

stiffeners of the beam shown in Fig. P.24.2 if the web panels resist shear stresses only.

Ans. q1 = 21.6N/mm q2 = −1.6N/mm q3 = 10N/mm

PC = 0 PB = 6480N (tension) PA = 9480N (tension)

PF = 0 PG = 480N (tension) PH = 2520N (compression)

PE in BEG = 2320N (compression) PD in ED = 6928N (tension)

PD in CD = 4320N (tension) PD in DF = 320N (tension).
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Fig. P.24.2

P.24.3 A three-flange wing section is stiffened by the wing rib shown in Fig. P.24.3.

If the rib flanges and stiffeners carry all the direct loads while the rib panels are effective

only in shear, calculate the shear flows in the panels and the direct loads in the rib flanges

and stiffeners.

Ans. q1 = 4.0N/mm q2 = 26.0N/mm q3 = 6.0N/mm

P2 in 12 = −P3 in 43 = 1200N (tension) P5 in 154 = 2000N (tension)

P3 in 263 = 8000N (compression) P5 in 56 = 12 000N (tension)

P6 in 263 = 6000N (compression).

Fig. P.24.3
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